Microwave:-
$\rightarrow$ Micro have
small EM wave
$\rightarrow$ Introduced by Nellocarne in 1932.
$\rightarrow$ Microwaves are Electromagnetic waves whose Wavelength ranges from 1 mm to 1 m and frewency ranges from 300 MHz to 300 HHz . Electromagnetic spectrum:-


Infrared rays $\rightarrow$ Used in remotes
Microwaves $\cdots$ Point to Point communication links wireless networks.
Radiowaves $\cdots \rightarrow$ broadcasting, communication UV rays $\quad \rightarrow$ mineral water purifiers.
$x$-rays $\rightarrow$ to identify the structure of an atom, to find out the mass of $e^{-}$. Also used in bone fracture treatment.
$\Gamma$-rays
$\rightarrow$ medicine industry- \& nuclear industry.
cosmic rays satellite and space probes.


Microwave band designation:-
Application
$L-$ band $\rightarrow(1-2) G \mathrm{~Hz} \rightarrow$ Radar Communication, GPS, aircraft survellionce.
S-band $\rightarrow(2-4) \mathrm{GHZ} \rightarrow \rightarrow$ Weather forecasting, Surface Ship Radar communication, Wifi and bluetooth.
c-band $\rightarrow(4-8) \mathrm{GHz} \rightarrow$ Satellite communication
$x-$ band $\rightarrow(8-12) \mathrm{GHz} \rightarrow \rightarrow$ Radar communication
Ku-band $\rightarrow(12-18) G \mathrm{~Hz} \rightarrow \rightarrow$ Airtraffic control
$K-$ band $\longrightarrow(18-27) \mathrm{GHz} \rightarrow$ Astronomy, satellite communication
Ka-band $\rightarrow(27-40) \mathrm{GHz} \rightarrow \rightarrow$ Low Range Radar Applications
millimeter $\rightarrow(40-300) \mathrm{GHz}$
Sub-millimeter $\rightarrow(>300 \mathrm{GHz})=$
Due to these many applications. We need to study the subject of Microwave Engineering.
Advantages of MWE:-
$\rightarrow$ Increased bandwidth, so that you can transmit more information.
$\rightarrow$ Better directivity (Frequency $\uparrow, \lambda \downarrow$, beamwidth $\downarrow$ and hence direotivity $\uparrow$ ).
$\rightarrow$ Fading effect is less as the signal frequency is high.
$\rightarrow$ Power requirement is Less.

Wave:- A wave is defined as a physical quant Whose amplitude changes at every instant of time.

$$
\epsilon=\epsilon_{0} e^{j \omega t} \longrightarrow \text { (1) }
$$

Partial differentiating on both sides we get,

$$
\begin{aligned}
& \frac{\partial \epsilon}{\partial t}=\epsilon_{0} e^{j \omega t} \cdot j \omega \\
\Rightarrow & \frac{\partial \epsilon}{\partial t}=j \omega \epsilon \quad(\text { from (1) }) \\
\Rightarrow & \frac{\partial}{\partial t}=j \omega
\end{aligned}
$$

Again Partial differentiate on both sides weget

$$
\begin{aligned}
& \frac{\partial^{2} \epsilon}{\partial t^{2}}=\epsilon_{0} j \omega e^{j \omega t} j \omega \\
\Rightarrow & \frac{\partial^{2} \epsilon}{\partial t^{2}}=-\omega^{2} \epsilon \\
\Rightarrow & \frac{\partial^{2} \epsilon}{\partial t^{2}}=-\omega^{2} \epsilon \\
\Rightarrow & \frac{\partial^{2}}{\partial t^{2}}=-\omega^{2}
\end{aligned}
$$

Electromagnetic waves:-
The waves which satisfy Maxcuell's equations are referred to as Electromagnetic waves (EM waves). Maxwell is the Person who Proved
that there exists a relation between electric and magnetic fields.
Maxwell's equations for time-varying fields:-

1. $\nabla \cdot \bar{D}=P_{V}$
2. $\nabla \times \bar{E}=-B^{0}=-\frac{\partial B}{\partial t}$
3. $\nabla \times \bar{H}=J+D^{\circ}=J+\frac{\partial D}{\partial t}$
4. $\nabla \cdot \bar{B}=0$

Maxwell's equations for freesPace:for freespace, $P_{v}=0$ and $\sigma=0$ from phon's law

$$
\begin{aligned}
& \nabla \cdot \bar{D}=0 \quad \longrightarrow \text { (1) } \\
& \nabla \times \bar{E}=-B^{0}=-\frac{\partial B}{\partial t} \longrightarrow \text { (2) } \\
& \nabla \times \bar{H}=D^{0}=\frac{\partial D}{\partial t} \longrightarrow \text { (3) } \\
& \nabla \cdot \bar{B}=0 \rightarrow \text { (4) }
\end{aligned}
$$

We know that

$$
\begin{aligned}
& \bar{D}=\varepsilon \bar{\epsilon} \\
& \bar{B}=\mu \bar{H}
\end{aligned}
$$

from this we, can write,

$$
\left.\begin{array}{l}
\nabla \cdot \bar{D}=0 \\
\nabla \cdot \bar{\epsilon}=0
\end{array}\right\} \rightarrow(1)
$$

Now, let uS derive the wave equation for Microwave ( $\epsilon M$ wave).

Wave equation for Microwave:-
consider, Maxwell's second equation and third equation

$$
\nabla \times \bar{\epsilon}=-j \omega \mu \bar{H}
$$

Taking 'curl' on bes

$$
\begin{aligned}
& \nabla \times(\nabla \times \bar{\epsilon})=-j \omega \mu(\nabla \times \bar{H}) \\
& \Rightarrow \nabla \times(\nabla \times \bar{\epsilon})=-j \omega \mu(j \omega \varepsilon \bar{\epsilon}) \\
& \Rightarrow \nabla \times(\nabla \times \bar{\epsilon})=\omega^{2} \mu \varepsilon \bar{\epsilon} \\
& \Rightarrow \nabla \cdot(\nabla \cdot \bar{\epsilon})-\bar{\epsilon}(\nabla \cdot \nabla)= \\
& \omega^{2} \mu \varepsilon \bar{\epsilon} \\
& \Rightarrow 0-\nabla^{2} \bar{\epsilon}=\omega^{2} \mu \varepsilon \bar{\epsilon} \\
& \Rightarrow \nabla^{2} \bar{\epsilon}=-\omega^{2} \mu \varepsilon \bar{\epsilon}
\end{aligned}
$$

$$
\nabla \times \bar{H}=j \omega \varepsilon \bar{\epsilon}
$$

Taking 'curl' on bes

$$
\begin{aligned}
& \nabla \times(\nabla \times \bar{H})=j \omega \varepsilon(\nabla \times \bar{\epsilon}) \\
\Rightarrow & \nabla \times(\nabla \times \bar{H})=j \omega \varepsilon(-j \omega \mu \bar{H} \\
\Rightarrow & \nabla \times(\nabla \times \bar{H})=\omega^{2} \mu \varepsilon \bar{H} \\
\Rightarrow & \nabla \cdot(\nabla \cdot \bar{H})-\bar{H}(\nabla \cdot \nabla)= \\
& \omega^{2} \mu \varepsilon \bar{H} \\
\Rightarrow & 0-\nabla^{2} \bar{H}=\omega^{2} \mu \varepsilon \bar{H} \\
\Rightarrow & \nabla^{2} \bar{H}=-\omega^{2} \mu \varepsilon \bar{H}
\end{aligned}
$$

Vector identity:-

$$
\bar{A} \times(\bar{B} \times \bar{C})=\bar{A} \cdot(\bar{B} \cdot \bar{C})-\bar{C} \cdot(\bar{B} \cdot \bar{A})
$$

$$
\begin{aligned}
\nabla^{2} \bar{\epsilon}=-\omega^{2} \mu \varepsilon \bar{\epsilon} \\
\nabla^{2} \bar{H}=-\omega^{2} \mu \varepsilon \bar{H}
\end{aligned} \rightarrow \begin{aligned}
& \text { (Helmholtz wave } \\
& \text { equations) }
\end{aligned}
$$

$\beta=\omega \sqrt{\mu \varepsilon} \rightarrow$ Phaseshift constant
$\alpha \rightarrow$ Attenuation constant
$r \rightarrow$ Propagation constant

$$
\gamma=\alpha+j \beta
$$

TEM wave :-
A wave consisting of both electric field and magnetic field which are ter to each other and are Perpendicular to the direction of Wave Propagation is referred to as "Transverse Electromagnetic wave".

TE Wave:- A Ware Whose electric field component is zero in the direction of Propagation but with non-zero magnetic field component is referred to as "Transverse electric wave". ie., $\quad \epsilon_{2}=0 ; H_{z} \neq 0$
TM wave:- A Wave whose magnetic field component is zero in the direction of Propagation but with non-zero electric field component is referred to as "Transverse magnetic wave" ie, $H_{z}=0 ; \epsilon_{z} \neq 0$
Hybrid wave:- A Wave whose electric field and magnetic field components are nonzero, in the direction of propagation is referred to as Hybrid wave. On the other hand the wave consists of electric \& magnetic field components in the direction of Propagation.
i.e., $\epsilon_{z} \neq 0$ and $H_{z} \neq 0$

To findout the field components:-

$$
\left(\epsilon_{x}, H_{y}, \epsilon_{y} \& H_{x}\right)
$$

We know that

$$
\begin{aligned}
\nabla^{2} \bar{\epsilon} & =-\beta^{2} \bar{\epsilon} \\
\Rightarrow \nabla^{2} \bar{\epsilon} & \left.=-\omega^{2} \mu \bar{\epsilon} \epsilon \rightarrow \text { (1) } \quad \text { mode }\right) \\
\nabla^{2} \bar{B} & =-\beta^{2} \bar{H} \\
\Rightarrow \nabla^{2} \bar{H} & =-\omega^{2} \mu \varepsilon \bar{H} \rightarrow(2)(T \epsilon \operatorname{modc})
\end{aligned}
$$

consider any of the two equations. Let's consider, eqn-(2)

$$
\begin{gathered}
\nabla^{2} \bar{H}=-\omega^{2} \mu \varepsilon \bar{H} \\
\Rightarrow \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{z}}{\partial y^{2}}+\frac{\partial^{2} H_{z}}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \bar{H}_{z} \rightarrow \text { (3) } \\
\left(\because \nabla=\frac{\partial}{\partial x} a_{x}+\frac{\partial}{\partial y} a_{y}+\frac{\partial}{\partial z} a_{z}\right.
\end{gathered}
$$

$H_{z} \rightarrow$ Wave Propagating in $z$-direction)
Replace $\frac{\partial}{\partial z}=-\gamma$ in eq n-(3)
indicates that wave is in forward

$$
\begin{aligned}
& \Rightarrow \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{z}}{\partial y^{2}}+\gamma^{2} H_{z}=-\omega^{2} \mu \varepsilon \bar{H}_{z} \\
& \Rightarrow \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{z}}{\partial y^{2}}+r^{2} H_{z}+\omega^{2} \mu_{\varepsilon} H_{z}=0 \\
& \Rightarrow \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{z}}{\partial y^{2}}+\left(r^{2}+w^{2} \mu_{\varepsilon}\right) H_{z}=0
\end{aligned}
$$

Let $h^{2}=r^{2}+w^{2} \mu \varepsilon$

$$
\begin{equation*}
\Rightarrow \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{z}}{\partial y^{2}}+h^{2} H_{z}=0 \tag{5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial^{2} \epsilon_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial y^{2}}+h^{2} \epsilon_{z}=0 \tag{6}
\end{equation*}
$$

From Maxwell's second equation,

$$
\begin{gathered}
\nabla \times \bar{\epsilon}=-j \omega \mu \bar{H} \\
\Rightarrow\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\epsilon_{x} & \epsilon_{y} & \epsilon_{z}
\end{array}\right|=-j \omega \mu \bar{H} \\
\Rightarrow\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & -\gamma \\
\epsilon_{x} & \epsilon_{y} & \epsilon_{z}
\end{array}\right|=-j \omega \mu\left(H_{x} a_{x}+H_{y} a_{y}+H_{z} a_{z}\right) \\
\Rightarrow \\
a_{x}\left(\frac{\partial \epsilon_{z}}{\partial y}+\gamma \epsilon_{y}\right)-a_{y}\left(\frac{\partial \epsilon_{z}}{\partial x}+\gamma \epsilon_{x}\right)+a_{z}\left(\frac{\partial \epsilon_{y}}{\partial x}-\frac{\partial \epsilon_{x}}{\partial y}\right)= \\
-j \omega \mu\left(H_{x} a_{x}+H_{y} a_{y}+H_{z} a_{z}\right)
\end{gathered}
$$

comparing the coefficients of $a_{x}, a_{y}, a_{z}$ on $b$.s

$$
\begin{align*}
& \left(\frac{\partial \epsilon_{z}}{\partial y}+\gamma \epsilon_{y}\right)=-j \omega \mu H_{x} \rightarrow \text { (7) }  \tag{7}\\
& -\left(\frac{\partial \epsilon_{z}}{\partial x}+\gamma \epsilon_{x}\right)=-j \omega \mu H_{y} \rightarrow \text { (8) }  \tag{8}\\
& \left(\frac{\partial \epsilon_{y}}{\partial x}-\frac{\partial \epsilon_{x}}{\partial y}\right)=-j \omega \mu H_{z} \rightarrow \text { (9) } \tag{9}
\end{align*}
$$

consider Maxwell's third equation,

$$
\left.\begin{array}{c}
\nabla \times \bar{H}=j \omega \varepsilon \bar{\epsilon} \\
\Rightarrow\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
H_{x} & H_{y} & H_{z}
\end{array}\right|=j \omega \varepsilon \bar{\epsilon}
\end{array}\left|=j \omega \varepsilon\left(\epsilon_{x} a_{x}+\epsilon_{y} a_{y}+\epsilon_{z} a_{z}\right)\right|=j \omega \varepsilon\left(\epsilon_{x} a_{x}+\epsilon_{y} a_{y}+\epsilon_{z} a_{z}\right)\right]\left(\left.\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
H_{x} & H_{y} & H_{z}
\end{array} \right\rvert\,=j\right.
$$

comparing the coefficients of $a_{x}, a_{y}, a_{z}$ on bothsides.

$$
\begin{align*}
\left(\frac{\partial H_{2}}{\partial y}+r H_{y}\right) & =j \omega \varepsilon \epsilon_{x}  \tag{10}\\
-\left(\frac{\partial H_{2}}{\partial x}+\gamma H_{x}\right) & =j \omega \varepsilon \epsilon_{y}  \tag{II}\\
\left(\frac{\partial H_{z}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right) & =j \omega \varepsilon \epsilon_{z} \tag{12}
\end{align*}
$$

from these Parameters find $E_{x}, H_{y}$, Eyad $H_{x}$ from eq n-(10) We have,

$$
\begin{align*}
& \frac{\partial H_{z}}{\partial y}+\gamma H_{y}=j \omega \varepsilon \epsilon_{x} \\
\Rightarrow & \epsilon_{x}=\frac{1}{j \omega \varepsilon}\left(\frac{\partial H_{z}}{\partial y}+\gamma H_{y}\right) \tag{13}
\end{align*}
$$

from eq n-(8) we have,

$$
\begin{align*}
& f\left(\frac{\partial \epsilon_{2}}{\partial x}+\gamma \epsilon_{x}\right)=-j \omega \mu H y \\
\Rightarrow & \frac{\partial \epsilon_{2}}{\partial x}+\gamma \epsilon_{x}=j \omega \mu H y \\
\Rightarrow & H y=\frac{1}{j \omega \mu}\left(\frac{\partial \epsilon_{2}}{\partial x}+\gamma \epsilon_{x}\right) \rightarrow \tag{14}
\end{align*}
$$

from ex n-(13) aid eq n-(14)

$$
\begin{aligned}
& \epsilon_{x}=\frac{1}{j \omega \varepsilon}\left\{\frac{\partial H_{z}}{\partial y}+\gamma\left[\frac{1}{j \omega \mu}\left(\frac{\partial \epsilon_{2}}{\partial x}+\gamma \epsilon_{x}\right)\right]\right\} \\
\Rightarrow & \epsilon_{x}=\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial y}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{z}}{\partial x}-\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon} \epsilon_{x} \\
\Rightarrow & \epsilon_{x}\left(1+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial y}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{z}}{\partial x} \\
\Rightarrow & \epsilon_{x}\left(\frac{\omega^{2} \mu \varepsilon+\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial y}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{z}}{\partial x}
\end{aligned}
$$

from eq${ }^{n}$-(4); we have $h^{2}=r^{2}+w^{2} \mu \varepsilon$

$$
\begin{aligned}
& \Rightarrow \epsilon_{x}\left(\frac{h^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial y}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{z}}{\partial x} \\
& \Rightarrow \epsilon_{x}=\frac{\omega^{2} \mu \varepsilon}{h^{2}} \cdot \frac{1}{j \omega_{q}} \frac{\partial H_{z}}{\partial y}-\frac{\omega^{2} \alpha \varepsilon}{h^{2}} \cdot \frac{\gamma}{\omega^{\mu} \mu \varepsilon} \frac{\partial \epsilon_{z}}{\partial x} \\
& \Rightarrow \epsilon_{x}=\frac{\omega_{\mu}}{h^{2}} \frac{1}{j} \frac{\partial H_{z}}{\partial y}-\frac{\gamma}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}
\end{aligned}
$$

$$
\Rightarrow \epsilon_{x}=-\frac{r}{h^{2}} \frac{\partial \epsilon_{2}}{\partial x}-j \frac{\omega \mu}{h^{2}} \frac{\partial H_{2}}{\partial y}
$$

To find Ey:-
from $e^{n}$-(11) we have

$$
\begin{align*}
& -\left(\frac{\partial H_{z}}{\partial x}+r H_{x}\right)=j \omega \varepsilon \epsilon y \\
\Rightarrow & \epsilon_{y}=-\frac{1}{j \omega \varepsilon}\left(\frac{\partial H_{z}}{\partial x}+r H_{x}\right) . \tag{15}
\end{align*}
$$

from eqn-(7) we have

$$
\begin{align*}
& \left(\frac{\partial \epsilon_{z}}{\partial y}+r \epsilon_{y}\right)=-j \omega \mu H_{x} \\
\Rightarrow & H_{x}=\frac{-1}{j \omega \mu}\left(\frac{\partial \epsilon_{2}}{\partial y}+r \epsilon_{y}\right) . \tag{16}
\end{align*}
$$

From eqn's -(15) aul (16)

$$
\begin{aligned}
& \epsilon_{y}=-\frac{1}{j \omega \varepsilon}\left\{\frac{\partial H_{z}}{\partial x}+\gamma\left[-\frac{1}{j \omega \mu}\left(\frac{\partial \epsilon_{2}}{\partial y}+\gamma \epsilon_{y}\right)\right]\right\} \\
& \Rightarrow \epsilon_{y}=-\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{2}}{\partial y}-\frac{1}{\omega^{2 \mu \varepsilon}} \gamma^{2} \epsilon_{y} \\
& \Rightarrow \epsilon_{y}\left(1+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)=-\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{2}}{\partial y} \\
& \Rightarrow \epsilon_{y}\left(\frac{\omega^{2} \mu \varepsilon+r^{2}}{\omega^{2} \mu \varepsilon}\right)=-\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{2}}{\partial y} \\
& \Rightarrow \epsilon_{y}\left(\frac{h^{2}}{\omega^{2} \mu \varepsilon}\right)=-\frac{1}{j \omega \varepsilon} \frac{\partial H_{z}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{2}}{\partial y} \\
& \Rightarrow \epsilon y=\frac{\omega^{2} \mu \varepsilon}{h^{2}}-\frac{1}{j \omega \ell} \frac{\partial H_{z}}{\partial x}-\frac{\omega^{2} \mu \varepsilon}{h^{2}} \cdot \frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial \epsilon_{z}}{\partial y} \\
& \Rightarrow \epsilon y=-\frac{\gamma}{h^{2}} \frac{\partial \epsilon_{2}}{\partial y}-\frac{1}{j} \frac{\omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial x}
\end{aligned}
$$

$$
\Rightarrow \epsilon_{y}=-\frac{\gamma}{h^{2}} \frac{\partial \epsilon_{2}}{\partial y}+\frac{j \omega \mu}{h^{\gamma}} \frac{\partial H_{z}}{\partial x}
$$

To find $H_{x}$ :-
from eq $\mathrm{q}^{n}$-(7) we have,

$$
\begin{align*}
& \frac{\partial \epsilon_{2}}{\partial y}+r \epsilon_{y}=-j \omega \mu H_{x} \\
\Rightarrow & H_{x}=-\frac{1}{j \omega \mu}\left(\frac{\partial \epsilon_{2}}{\partial y}+r \epsilon_{y}\right)- \tag{17}
\end{align*}
$$

from eqn-(11) We have,

$$
\begin{align*}
& -\left(\frac{\partial H_{z}}{\partial x}+\gamma H_{x}\right)=j \omega \varepsilon \epsilon y \\
\Rightarrow & \epsilon y=-\frac{1}{j \omega \varepsilon}\left(\frac{\partial H_{z}}{\partial x}+\gamma H_{x}\right) . \tag{18}
\end{align*}
$$

from-ern's - (17) and (18)

$$
\begin{aligned}
& H_{x}=-\frac{1}{j \omega \mu}\left\{\frac{\partial \epsilon_{2}}{\partial y}+r\left[-\frac{1}{j \omega \varepsilon}\left(\frac{\partial H_{z}}{\partial x}+\gamma H_{x}\right)\right]\right\} \\
\Rightarrow & H_{x}=-\frac{1}{j \omega \mu} \cdot \frac{\partial \epsilon_{z}}{\partial y}-\frac{r}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x}-\frac{1}{\omega^{2} \mu \varepsilon} r^{2} H_{x} \\
\Rightarrow & H_{x}\left(1+\frac{r^{2}}{\omega^{2} \mu \varepsilon}\right)=-\frac{1}{j \omega \mu} \frac{\partial \epsilon_{z}}{\partial y}-\frac{r}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x} \\
\Rightarrow & H_{x}\left(\frac{\omega^{2} \mu \varepsilon+r^{2}}{\omega^{2} \mu \varepsilon}\right)=-\frac{1}{j \omega \mu} \cdot \frac{\partial \epsilon_{2}}{\partial y}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x} \\
\Rightarrow & H_{x}\left(\frac{h^{2}}{\omega^{2} \mu \varepsilon}\right)=-\frac{1}{j \omega \mu} \frac{\partial \epsilon_{z}}{\partial y}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x} \\
\Rightarrow & H_{x}=\frac{\omega^{2} \mu \varepsilon}{h^{2}}-\frac{1}{j \omega^{2} \mu} \frac{\partial \epsilon_{z}}{\partial y}-\frac{\omega^{2} \mu \varepsilon}{h^{2}} \cdot \frac{\gamma^{2}}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial x} \\
\Rightarrow & H_{x}=\frac{-r^{2}}{h^{2}} \frac{\partial H_{z}}{\partial x}-\frac{1}{j} \frac{\omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial y} \\
\Rightarrow & H_{x}=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial x}+\frac{j \omega \varepsilon}{h^{\nu}} \frac{\partial \epsilon_{z}}{\partial y}
\end{aligned}
$$

To find Hy :-
from eqn-(8) we have,

$$
\begin{align*}
& f\left(\frac{\partial \epsilon_{2}}{\partial x}+\gamma \epsilon_{x}\right)=f j \omega \mu H_{y} \\
\Rightarrow & H_{y}=\frac{1}{j \omega \mu}\left(\frac{\partial \epsilon_{2}}{\partial x}+r \epsilon_{x}\right) \tag{19}
\end{align*}
$$

from eqn-(10) we have:

$$
\begin{align*}
& \frac{\partial H_{z}}{\partial y}+\gamma H_{y}=j \omega \varepsilon \epsilon_{x} \\
\Rightarrow & \epsilon_{x}=\frac{1}{j \omega \varepsilon}\left(\frac{\partial H_{z}}{\partial y}+\gamma H_{y}\right)
\end{align*}
$$

from enn's - (19) and (20)

$$
\begin{aligned}
& H_{y}=\frac{1}{j \omega \mu}\left\{\frac{\partial \epsilon_{2}}{\partial x}+\gamma\left[\frac{1}{j \omega \varepsilon}\left(\frac{\partial H_{z}}{\partial y}+\gamma H_{y}\right)\right]\right\} \\
\Rightarrow & H_{y}=\frac{1}{j \omega \mu} \frac{\partial \epsilon_{z}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial y}-\frac{1}{\omega^{2} \mu \varepsilon} \gamma^{2} H_{y} \\
\Rightarrow & H_{y}\left(1+\frac{\gamma^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{1}{j \omega \mu} \frac{\partial \epsilon_{z}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial y} \\
\Rightarrow & H_{y}\left(\frac{\omega^{2} \mu \varepsilon+r^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{1}{j \omega \mu} \frac{\partial \epsilon_{2}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial y} \\
\Rightarrow & H_{y}\left(\frac{h^{2}}{\omega^{2} \mu \varepsilon}\right)=\frac{1}{j \omega \mu} \frac{\partial \epsilon_{z}}{\partial x}-\frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial y} \\
\Rightarrow & H_{y}=\frac{\omega^{2} \mu \varepsilon}{h^{2}} \cdot \frac{1}{j \omega_{j \mu}} \frac{\partial \epsilon_{z}}{\partial x}-\frac{\omega^{2} \mu \varepsilon}{h^{2}} \cdot \frac{\gamma}{\omega^{2} \mu \varepsilon} \frac{\partial H_{z}}{\partial y} \\
\Rightarrow & H_{y}=-\frac{\gamma}{h^{2}} \frac{\partial H_{z}}{\partial y}+\frac{1}{j} \frac{\omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x} . \\
\Rightarrow & H_{y}=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial y}-j \frac{\omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{x}=\frac{-r}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}-j \frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y} \\
& \epsilon_{y}=-\frac{r}{h^{2}} \frac{\partial H \epsilon_{z}}{\partial y}+j \frac{j \mu}{h^{2}} \frac{\partial H_{z}}{\partial x} \\
& H_{x}=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial x}+j \frac{\omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial y} \\
& H y=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial y}-j \frac{j \varepsilon \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}
\end{aligned}
$$

How to transmit Microwaves:-
$\rightarrow$ Microwave frequency range is " 300 MHz to 300 GHz
To transmit such high frequency sign ais from one point to another point, various types of Transmission lines are used as listed below: (i) Openwire
(ii) Twinlead
(iii) Twisted Pair
(iv) Co-axial
(v) Optical fibre cables
(vi) Simply a copper wire
$\rightarrow$ However, the most widely used Tx line for Microwave Propagation is "Waveguides".
$\rightarrow$ Waveguides are hollow metallic tubes, in Which the electric field and magnetic field of the wave propagating, are Perpendicular to the direction of Propagation.

Rectangular waveguides:-
Analysis of TEM mode :-
$\rightarrow$ consider a rectangular waveguide, in which a Transverse Electromagnetic wave is propagating.
$\rightarrow$ We know that, for a TEM wave $\epsilon_{z}=0$ and $H_{z}=0$ if the wave is Propagating along $z$-direction.
$\rightarrow$ substituting $\epsilon_{2}=0$ and $H_{z}=0$ in below equations,

$$
\begin{aligned}
& \epsilon_{x}=-\frac{r}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}-j \frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y} \\
& \epsilon_{y}=-\frac{r}{h^{2}} \frac{\partial \epsilon_{2}}{\partial y}+j \frac{\omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial x} \\
& H_{x}=-\frac{r}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}+j \frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial y} \\
& H_{y}=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial y}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}
\end{aligned}
$$

We get, $\quad e_{x}=0$

$$
E y=0
$$

$$
H_{x}=0 \text { and }
$$

$$
H y=0
$$

$\rightarrow$ From this we can conclude that One cannot Propagate a TEM wave in rectangular waveguides (or) on the other hand, TEM ware doesnot exist in a rectangular waveguide.

Analysis of TM mode:-
$\rightarrow$ consider a rectangular waveguide with width ' $a$ ' and breadth ' $b$ '.
$\rightarrow$ Let US assume a wave in TM mode is Propagating in the rectangular waveguide along $z$-direction.

We know that

$$
\begin{aligned}
& \nabla^{2} \epsilon_{z}=-w^{2} \mu \varepsilon \epsilon_{z} \rightarrow \text { (1) } \\
& \nabla^{2} H_{z}=-w^{2} \mu \varepsilon H_{z} \rightarrow(2)
\end{aligned}
$$


from TM mode we can write,

$$
\begin{align*}
& \nabla^{2} \epsilon_{z}=-\omega^{2} \mu \varepsilon \epsilon_{z} \\
& \nabla^{2} H_{z}=-\omega^{2} \mu \varepsilon(0)=0 \quad\left(\because H_{2}=0 \& \epsilon_{2} \neq 0\right) \\
\therefore & \nabla^{2} \epsilon_{z}=-\omega^{2} \mu \varepsilon \epsilon_{z} \rightarrow(3) \\
\Rightarrow & \frac{\partial^{2} \epsilon_{2}}{\partial x^{2}}+\frac{\partial^{2} \epsilon_{2}}{\partial y^{2}}+\frac{\partial^{2} \epsilon_{2}}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \epsilon_{z} \\
& \text { Replace } \frac{\partial}{\partial z}=-r \\
\Rightarrow & \frac{\partial^{2} \epsilon_{z}}{\partial x^{2}}+\frac{\partial^{2} \epsilon_{z}}{\partial y^{2}}+r^{2} \epsilon_{z}=-\omega^{2} \mu \varepsilon \epsilon_{z} \\
\Rightarrow & \frac{\partial^{2} \epsilon_{2}}{\partial x^{2}}+\frac{\partial^{2} \epsilon_{2}}{\partial y^{2}}+r^{2} \epsilon_{2}+\omega^{2} \mu \varepsilon \epsilon_{z}=0 \\
\Rightarrow & \frac{\partial^{2} \epsilon_{2}}{\partial x^{2}}+\frac{\partial^{2} \epsilon_{2}}{\partial y^{2}}+\left(\gamma^{2}+\omega^{2} \mu \varepsilon\right) \epsilon_{2}=0 \\
\Rightarrow & \frac{\partial^{2} \epsilon_{2}}{\partial x^{2}}+\frac{\partial^{2} \epsilon_{2}}{\partial y^{2}}+h^{2} \epsilon_{2}=0 \rightarrow(4) \tag{4}
\end{align*}
$$

Let, $\epsilon_{2}=x y(\epsilon$ is in cither ' $x$ ' on ' $Y$ ' direction (A) aid hence ll a cousidevation is made of this type)

Here, $x$ is a pure function of ' $x$ '
$\therefore Y$ is a pure function of ' $Y$ '

$$
\begin{aligned}
& \Rightarrow \frac{\partial^{2}(x y)}{\partial x^{2}}+\frac{\partial^{2}(x y)}{\partial y^{2}}+h^{2}(x y)=0 \\
& \Rightarrow Y \cdot \frac{\partial^{2} x}{\partial x^{2}}+x \cdot \frac{\partial^{2} y}{\partial y^{2}}+h^{2}(x y)=0
\end{aligned}
$$

Divide above equation with " $X Y$ "

$$
\begin{aligned}
\Rightarrow & \frac{Y}{X Y} \cdot \frac{\partial^{2} X}{\partial x^{2}}+\frac{X}{x y} \cdot \frac{\partial^{2} Y}{\partial y^{2}}+\frac{h^{2}(x Y)}{x Y}=0 \\
\Rightarrow & \frac{1}{x} \cdot \frac{\partial^{2} X}{\partial x^{2}}+\frac{1}{Y} \cdot \frac{\partial^{2} Y}{\partial y^{2}}+h^{2}=0 \\
& \text { Let } \frac{1}{x} \cdot \frac{\partial^{2} X}{\partial x^{2}}=-B^{2} \\
& \frac{1}{Y} \cdot \frac{\partial^{2} Y}{\partial y^{2}}=-A^{2} \\
\Rightarrow & -B^{2}-A^{2}+h^{2}=0 \\
\Rightarrow & h^{2}=A^{2}+B^{2} \rightarrow \text { (5) }
\end{aligned}
$$

Here, $\frac{1}{x} \cdot \frac{\partial^{2} x}{\partial x^{2}}=-B^{2}$ is a second order $D \cdot q^{n}$ war. to and hence the solution is given by,

$$
\begin{equation*}
x=\left(C_{1} \cos B x+C_{2} \sin B x\right) \tag{6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
Y=\left(c_{3} \cos A y+c_{4} \sin A y\right) \tag{7}
\end{equation*}
$$

We have, $\epsilon_{Z}=x y$

$$
\begin{equation*}
\Rightarrow \epsilon_{2}=\left(C_{1} \cos B x+C_{2} \sin B x\right)\left(C_{3} \cos A y+\underset{>8}{C_{4} \sin A y}\right) \tag{8}
\end{equation*}
$$

To find $c_{1}, c_{2}, c_{3}$ and $c_{4}$ :-
Boundary conditions:-
(1) Bottom wall:-

$$
\epsilon_{z}=0 \text { for } y=0 \forall x=0 \text { to a } \quad\left(\begin{array}{l}
E \text { on the walls } \\
\text { of a R waveguth } \\
\text { is zero }
\end{array}\right.
$$

(2) Leftside wall:-

$$
\epsilon_{z}=0 \text { for } x=0 \quad \forall y=0 \text { to } b
$$

(3) Top wall:-

$$
\epsilon_{z=0} \text { for } y=b \quad f x=0 \text { to } a
$$

(4) Right-side wall:-

$$
\epsilon_{z}=0 \text { for } x=a \quad \forall y=0 \text { to } b
$$

Substituting (1) ${ }^{\text {st }}$ boundary condition in $\mathrm{eq}^{\mathrm{n}}$-(8)

$$
\begin{gathered}
0=\left(c_{1} \cos B x+c_{2} \sin B x\right) C_{3} \\
\neq 0
\end{gathered}
$$

Hence, $C_{3}=0$
now eqn-(8) becomes,

$$
\epsilon_{2}=\left(C_{1} \cos B x+C_{2} \sin B x\right) C_{4} \sin A y \rightarrow \text { (9) }
$$

Substituting (2) ${ }^{n}$ boundary condition in $e^{n}$-(9)

$$
\begin{aligned}
& \epsilon_{z=0} \text { for } x=0 \quad \forall y=0 \text { to } b \\
\Rightarrow & 0=c_{1} \underbrace{c_{4} \sin A y}_{=1} \quad(\because y \text { es variable })
\end{aligned}
$$

Hence, $\quad C A=0$
now eq -(9) becomes;

$$
\epsilon_{2}=C_{2} \sin B x \cdot C_{4} \sin A y \rightarrow \text { (10) }
$$

Substituting (3) ${ }^{r d}$ boundary condition in eq n $^{2} \sqrt{10}$

$$
0=\underbrace{C_{2} \sin B x}_{\neq 0} \cdot C_{4} \sin A b \quad \because x^{\prime} \text { is variable }
$$

Hence, $c_{4} \sin A b=0$

$$
\begin{aligned}
& \sin A b=0 \\
& A b= \pm n \pi \\
& A= \pm \frac{n \pi}{b}
\end{aligned}
$$

now, e $x^{n}$-(10) becomes,

$$
\epsilon_{z}=C_{2} \sin B x \cdot C_{4} \sin \left(\frac{n \pi}{b}\right) y \rightarrow \text { (II) }
$$

Substituting (4) $4^{\text {th }}$ boundary condition in eq

$$
0=C_{2} \sin B a \cdot \underbrace{C_{4} \sin \left(\frac{n \pi}{6}\right) y}_{\neq 0} \quad \because y^{\prime} \text { is varia }
$$

Hence, $C_{2} \sin B a=0$
$\sin B a=0$

$$
\begin{aligned}
a B & = \pm m \pi \\
B & =\frac{ \pm m \pi}{a} \\
\therefore B & = \pm \frac{m \pi}{a}
\end{aligned}
$$

now, eq- (II) becomes

$$
\begin{align*}
\epsilon_{z} & =c_{2} \sin \left(\frac{n \pi}{a}\right) x \cdot c_{4} \sin \left(\frac{n \pi}{b}\right) y \\
\Rightarrow \epsilon_{2} & =c_{2} c_{4} \sin \left(\frac{m \pi}{a}\right) x \sin \left(\frac{n \pi}{b}\right) y \tag{12}
\end{align*}
$$

We know that

$$
\begin{aligned}
& \epsilon_{x}=-\frac{\gamma}{h^{2}} \frac{\partial \epsilon_{2}}{\partial x}-\frac{j \omega \mu}{h^{2}} \frac{\partial+H_{2}}{\partial y} \\
& \Rightarrow \epsilon_{x}=-\frac{\gamma}{h^{2}} \frac{\partial}{\partial x}\left(c \sin \left(\frac{m \pi}{a}\right) x \cdot \sin \left(\frac{n \pi}{b}\right) y\right)-0 \\
& \left(\because H_{z}=0 \text { for } a\right. \\
& \text { Th wave) }
\end{aligned}
$$

similarly,

$$
\begin{aligned}
\epsilon y & =-\frac{r}{h^{2}} \frac{\partial \epsilon_{2}}{\partial y}+\frac{j \omega \mu}{h^{2}} \frac{\partial H_{2}}{\partial x} \\
\Rightarrow \epsilon y & =-\frac{r}{h^{2}} \frac{\partial}{\partial y}\left(c \sin \left(\frac{n \pi}{a}\right) x \cdot \sin \left(\frac{n \pi}{b}\right) y\right)-0 \\
& =-\frac{r}{h^{2}} \cdot c \sin \left(\frac{m \pi}{a}\right) x \cdot\left(\frac{n \pi}{b}\right) \cos \left(\frac{n \pi}{b}\right) y \\
\epsilon y & =-\frac{r}{h^{2}} c \sin \left(\frac{m \pi}{a}\right) x \cdot\left(\frac{n \pi}{b}\right) \cos \left(\frac{n \pi}{b}\right) y
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& H_{x}=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial x}+\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{2}}{\partial y} \\
& \Rightarrow H_{x}=-\frac{r}{h^{2}}(0)+\frac{j \omega \varepsilon}{h^{2}} \frac{\partial}{\partial y}\left(C \sin \left(\frac{n \pi}{a}\right) x .\right. \\
&\left.\sin \left(\frac{n \pi}{b}\right) y\right) \\
& \Rightarrow H_{x}=j \frac{j \varepsilon \varepsilon}{h^{2}} \cdot c \sin \left(\frac{m \pi}{a}\right) x\left(\frac{n \pi}{b}\right) \cos \left(\frac{n \pi}{b}\right) y
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \quad H y=-\frac{r}{h^{2}} \frac{\partial H_{2}}{\partial y}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x} \\
& \Rightarrow H y=-\frac{-r}{h^{2}}(0)-j \frac{\omega \varepsilon}{h^{2}}\left(\frac{\partial}{\partial x}\left(c \sin \left(\frac{m \pi}{a}\right) x \cdot \sin \left(\frac{n \pi}{b}\right) y\right)\right. \\
& \Rightarrow \\
& \quad H y=-j \omega \varepsilon \\
& \\
& \quad H \sin \left(\frac{n \pi}{h^{2}}\right) y\left(\frac{m \pi}{a}\right) \cos \left(\frac{n \pi}{a}\right) x \\
&
\end{aligned}
$$

In total,

$$
\begin{aligned}
& \epsilon_{x}=-\frac{r}{h^{2}} c\left(\frac{m \pi}{a}\right) \cos \left(\frac{m \pi}{a}\right) x \sin \left(\frac{n \pi}{b}\right) y \\
& \epsilon_{y}=-\frac{r}{h^{2}} c\left(\frac{n \pi}{b}\right) \sin \left(\frac{m \pi}{a}\right) x \cdot \cos \left(\frac{n \pi}{b}\right) y \\
& H_{x}=\rho \frac{\underline{ }}{h^{2}} c\left(\frac{n \pi}{b}\right) \sin \left(\frac{m \pi}{a}\right) x \cos \left(\frac{n \pi}{b}\right) y \\
& H_{y}=-\frac{j \omega \varepsilon}{h^{2}} c\left(\frac{m \pi}{a}\right) \sin \left(\frac{n \pi}{b}\right) y \cos \left(\frac{m \pi}{a}\right) x
\end{aligned}
$$

Steps to be followed:-
(1) $H_{z}=0$ from definition
(2)

$$
\begin{aligned}
& \nabla^{2} \epsilon_{z}=-\omega^{2} \mu \varepsilon \epsilon_{z} \\
& \nabla^{2}+H_{z}=-\omega^{2} \mu \varepsilon H_{z} \\
& \Rightarrow \quad 0=-\omega^{2} \mu \varepsilon(0) \Rightarrow 0
\end{aligned}
$$

(3) $\frac{\partial^{2} \epsilon_{2}}{\partial x^{2}}+\frac{\partial^{2} G_{2}}{\partial y^{2}}+h^{2} \epsilon_{z}=0$
(4) Variable \&separable method: $\epsilon_{z}=x y$
(5) Boundary conditions of Rectangular waveguide.
(6) find $\epsilon_{x}, \epsilon_{y}, H_{x}$ aid $H_{y}$ :

Analysis of TE mode:-
TE Wave: $\epsilon_{2}=0$ ad $H_{2} \neq 0$
We know that

$$
\begin{align*}
& \nabla^{2} \epsilon_{2}=-\omega^{2} \mu \varepsilon \epsilon_{2}  \tag{1}\\
& \nabla^{2} H_{2}=-\omega^{2} \mu \varepsilon H_{2} \tag{2}
\end{align*}
$$

The equation-(1) is cancelled, consider eqn-(2)

$$
\begin{aligned}
& \nabla^{2} H_{z}=-\omega^{2} \mu \varepsilon H_{z} \\
\Rightarrow & \frac{\partial^{2} H_{2}}{\partial x^{2}}+\frac{\partial^{2} H_{2}}{\partial y^{2}}+\frac{\partial^{2} H_{2}}{\partial z^{2}}=-\omega^{2} \mu \varepsilon H_{z} \\
\Rightarrow & \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{2}}{\partial y^{2}}+r^{2} H_{z}+\omega^{2} \mu \varepsilon H_{z}=0 \\
\Rightarrow & \frac{\partial^{2} H_{z}}{\partial x^{2}}+\frac{\partial^{2} H_{z}}{\partial y^{2}}+\left(r^{2}+\omega^{2} \mu \varepsilon\right) H_{z}=0
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \frac{\partial^{2} H_{2}}{\partial x^{2}}+\frac{\partial^{2} H_{2}}{\partial y^{2}}+h^{2} H_{2}=0- \tag{4}
\end{equation*}
$$

consider, $\quad H_{2}=x y$

$$
\begin{aligned}
& \Rightarrow \frac{\partial^{2}(x y)}{\partial x^{2}}+\frac{\partial^{2}(x Y)}{\partial y^{2}}+h^{2}(X Y)=0 \\
& \Rightarrow Y \cdot \frac{\partial^{2} x}{\partial x^{2}}+X \cdot \frac{\partial^{2} Y}{\partial y^{2}}+h^{2}(X Y)=0
\end{aligned}
$$

Dividing the above equation with "Ky" we get

$$
\begin{aligned}
& \Rightarrow \frac{1}{x} \cdot \frac{\partial^{2} x}{\partial x^{2}}+\frac{1}{Y} \frac{\partial^{2} y}{\partial y^{2}}+h^{2}=0 \\
& \text { LeCt, } \frac{1}{x} \cdot \frac{\partial^{2} x}{\partial x^{2}}=-B^{2} \\
& \frac{1}{Y} \cdot \frac{\partial^{2} y}{\partial y^{2}}=-A^{2} \\
& \Rightarrow \quad-B^{2}-A^{2}+h^{2}=0 \\
& \Rightarrow \quad h^{2}=A^{2}+B^{2} \rightarrow(5) \\
& X=\left(C_{1} \cos B x+C_{2} \sin B x\right) \rightarrow \text { (6) } \\
& Y=\left(C_{3} \cos A y+c_{4} \sin A y\right) \rightarrow \text { (7) }
\end{aligned}
$$

We have, $H_{2}=x y$

$$
\begin{array}{r}
\therefore H_{2}=\left(C_{1} \cos B x+C_{2} \sin B x\right)\left(C_{3} \cos A y+\right. \\
\left.C_{4} \sin A y\right) \tag{8}
\end{array}
$$

Boundary conditions:-
Bottom wall:-
$\epsilon_{x}=0$ for $y=0 \quad f x=0$ to a
Leftside wall:-
$\epsilon_{y}=0$ for $x=0$ f $y=0$ to $b$
Top wall:-
$\epsilon_{x}=0$ for $y=b$ of $x=0$ to $a$
Rightside wall:-
Ey=0 for $x=a \quad \forall y=0$ to brat on the walls, म exists
Substituting (1) ${ }^{\text {st }}$ boundary condition in eq n-(8) before this, we have to find $\epsilon_{x}$ component We know that

$$
\begin{aligned}
\epsilon_{x} & =-\frac{r}{h^{2}} \frac{\partial E_{z}}{\partial x}-\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y} \\
\Rightarrow E_{x} & =\frac{-j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y} \quad\left(\because \epsilon_{2}=0 \text { for TE wave }\right)
\end{aligned}
$$

Substituting ' $\epsilon_{x}$ ' value in eq n-(8) we get,

$$
\begin{array}{r}
E_{x}=\frac{-j \omega \mu}{h^{2}}\left[( C _ { 1 } \operatorname { c o s } B x + C _ { 2 } \operatorname { s i n } B x ) \left(A C_{3} \sin A y-\right.\right. \\
\left.\left.A C_{4} \cos A y\right)\right] \\
0=\frac{-j \omega \mu}{h^{2}}\left(C_{1} \cos B x+C_{2} \sin B x\right)\left(-A C_{4}\right)
\end{array}
$$

$$
\therefore C_{4}=0
$$

now eq n-(8) becomes,

$$
H_{2}=\left(C_{1} \cos B x+C_{2} \sin B x\right)\left(C_{3} \cos A y\right) \rightarrow \text { (9) }
$$

Substituting $2^{\text {nd }}$ boundary condition in eq? We know that

$$
\begin{aligned}
& \epsilon_{y}=\frac{-r}{h^{\nu}} \frac{\partial \epsilon_{2}}{\partial y}+\frac{j \omega \mu}{h^{\nu}} \frac{\partial H_{2}}{\partial x} \\
\Rightarrow & \epsilon_{y}=\frac{j \omega \mu}{h^{\nu}} \frac{\partial H_{2}}{\partial x} \\
\Rightarrow & \epsilon_{y}=\frac{j \omega \mu}{h^{\nu}}\left[\left(-B C_{1} \sin B+B C_{2} \cos B x\right)+\left(C_{3} \cos A y\right)\right] \\
\Rightarrow \quad & 0=\frac{j \omega \mu}{h^{2}}\left(-C_{2} B\right)\left(C_{3} \cos A y\right) \\
\Rightarrow \quad & +C_{2} B=0 \\
\Rightarrow \quad & C_{2}=0
\end{aligned}
$$

now eqn-(4) becomes,

$$
H_{z}=\left(C_{1} \cos B x\right)\left(C_{3} \cos A y\right) \rightarrow(10)
$$

Substituting (3) ${ }^{r d}$ boundary condition in $e^{n}$-(10) We know that

$$
E_{x}=\frac{-r}{h^{2}} \frac{\partial \epsilon_{2}}{\partial x}-\frac{j w \mu}{h^{2}} \frac{\partial H_{2}}{\partial y}
$$

$$
\begin{aligned}
& \Rightarrow E_{x}=\frac{-j \omega \mu}{h^{2}} \cdot\left[\left(C_{1} \cos B x\right)\left(-A C_{3} \sin A y\right)\right] \\
& \Rightarrow 0=\frac{-j \omega \mu}{h^{2}}\left[\left(C_{1} \cos B x\right)\left(A C_{3} \sin A b\right)\right] \\
& \Rightarrow A C_{3} \sin A b=0 \\
& \Rightarrow \sin A b=0 \\
& \Rightarrow A b= \pm m \pi \\
& \Rightarrow A=\frac{m \pi}{b}
\end{aligned}
$$

Now, eqn-(10) becomes,

$$
H_{2}=\left(C_{1} \cos B x\right)\left(C_{3} \cos \left(\frac{m \pi}{b}\right) y\right) \rightarrow \text { (11) }
$$

Substituting. (4) ${ }^{\text {th }}$ boundary condition in eq $q^{n}$-(II) We know that.

$$
\left.\begin{array}{rl}
\epsilon_{y} & =\frac{-r}{h^{2}} \frac{\partial \epsilon_{2}}{\partial y}+\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial x} \\
\Rightarrow 0 & =\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial x} \\
\Rightarrow 0 & =\frac{j \omega \mu}{h^{2}}\left(B c_{1} \sin B a\right)\left(C_{3} \cos \left(\frac{m \pi}{b}\right) y\right.
\end{array}\right)
$$

now eq n-(11) becomes

$$
H_{z}=c \cos \left(\frac{n \pi}{a}\right) x \cdot \cos \left(\frac{m \pi}{b}\right) y \underset{\rightarrow(12)}{ }\left(\because c=\dot{c}_{1} c_{3}\right)
$$

$$
\begin{aligned}
& E_{x}=-\frac{r}{h^{2}} \frac{\partial E_{2}}{\partial x}-\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y} \\
& \Rightarrow \epsilon_{x}=\frac{-r}{h^{2}}(0)-\frac{j \omega \mu}{h^{2}} \frac{\partial}{\partial y}\left[c \cos \left(\frac{n \pi}{a}\right) x \cdot \cos \left(\frac{m \pi}{b}\right)\right] \\
& \Rightarrow \epsilon_{x}=\frac{-j \omega \mu}{h^{2}}\left[C \cos \left(\frac{n \pi}{a}\right) x \cdot-\left(\frac{m \pi}{b}\right) \sin \left(\frac{\dot{n} \pi}{b}\right) y\right] \\
& \Rightarrow \epsilon_{x}=\frac{j \omega \mu}{h^{2}} C\left(\frac{m \pi}{b}\right) \cos \left(\frac{n \pi}{a}\right) x \cdot \sin \left(\frac{m \pi}{b}\right) y \\
& \epsilon_{y}=-\frac{r}{h^{\nu}} \frac{\partial \epsilon_{2}}{\partial y}+\frac{j \omega \mu}{h^{\nu}} \frac{\partial H_{2}}{\partial x} \\
& \Rightarrow \epsilon_{y}=\frac{j \omega \mu}{h^{2}} \frac{\partial}{\partial x}\left[c \cos \left(\frac{n \pi}{a}\right) x \cdot \cos \left(\frac{n \pi}{b}\right) y\right] \\
& \Rightarrow \epsilon_{y}=\frac{j \omega \mu}{h^{2}}\left[c \cos \left(\frac{n \pi}{b}\right) y \cdot-\left(\frac{n \pi}{a}\right) \sin \left(\frac{n \pi}{a}\right) x\right] \\
& \Rightarrow \epsilon_{y}=-\frac{j \omega \mu}{h^{2}} c\left(\frac{n \pi}{a}\right) \cos \left(\frac{n \pi}{b}\right) y \sin \left(\frac{n \pi}{a}\right) x \\
& H_{x}=-\frac{\gamma}{h^{2}} \frac{\partial H_{2}}{\partial x}+\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{2}}{\partial y} \\
& \Rightarrow H_{x}=\frac{-r}{h^{2}}\left[\frac{\partial}{\partial x}\left(c \cos \left(\frac{n \pi}{a}\right) x \cdot \cos \left(\frac{m \pi}{b}\right) y\right)\right] \\
& \Rightarrow H x=-\frac{r}{h^{2}}\left[C \cos \left(\frac{m \pi}{b}\right) y\left(\frac{n \pi}{a}\right)\left(-\sin \left(\frac{n \pi}{a}\right) x\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow H_{x}=\frac{r}{h^{2}}\left[c\left(\frac{n \pi}{a}\right) \cos \left(\frac{m \pi}{b}\right) y \sin \left(\frac{n \pi}{a}\right) x\right]\right] \\
& H_{y}=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial y}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{2}}{\partial x} \\
& \Rightarrow H_{y}=-\frac{r}{h^{2}} \frac{\partial}{\partial y}\left[c \cos \left(\frac{n \pi}{a}\right) x \cdot \cos \left(\frac{m \pi}{b}\right) y\right] \\
& \Rightarrow H_{y}=-\frac{r}{h^{2}}\left[c \cos \left(\frac{n \pi}{a}\right) x \cdot-\left(\frac{m \pi}{b}\right) \sin \left(\frac{m \pi}{b}\right) y\right] \\
& \Rightarrow H_{y}=\frac{r}{h^{2}}\left[c\left(\frac{m \pi}{b}\right) \cos \left(\frac{n \pi}{a}\right) x \sin \left(\frac{m \pi}{b}\right) y\right]
\end{aligned}
$$

Summary:-
(1) Define TE wave
(2) Helmholtz wave eqn's
(3) $H_{2}=\left(C_{1} \cos B x+C_{2} \sin B x\right)\left(C_{3} \cos A y+C_{4} \sin A y\right)$

$$
H_{2}=c \cos \left(\frac{n \pi}{a}\right) x \cdot \cos \left(\frac{m \pi}{b}\right) y
$$

(4) Boundary conditions
(5) Substituting Boundary Conditions in $\epsilon_{x}, \epsilon_{y}$
(6) obtain the field component $\mathrm{H}_{2}$
(7) Obtain the field components $\epsilon_{x}, \epsilon_{y}, H_{x}$ and By.
$\rightarrow$ When a wave enters into a rectangular waveguide it follows different Patterns and exhibits a wide range of behaviour.

TE mn mode:-

Rectangular waveguide
$m \rightarrow$ no.0F half wave variations along $x$-direct only half-wave is touching.
$n \rightarrow$ no.0f half wave variations along $Y$-direction
$\square$ only half-wave is touching
eg:-

along yetis of varia

directions

C
$\epsilon_{10}$
$\epsilon_{y}$
$H x$

TMmn mode:-
$m \rightarrow$ no. of halfwave variations along $X$-direction $n \rightarrow$ no. of half wave variations along $y$-direction eg:-


$$
\equiv T M_{01}
$$



|  | $T M_{10}$ | $T M_{01}$ | $T M_{11}$ |
| :--- | :--- | :--- | :--- |
| $\epsilon_{x}$ |  |  |  |
| $\epsilon_{y}$ |  |  |  |
| $H_{x}$ | $x$ | $x$ |  |
| $H_{y}$ | $x$ | $x$ |  |

Note:-

* In TEMN mode, we will refer to electric field. * In TMMN mode, we will refer to magnetic field.
characteristics of $T \in$ and $T M$ waves in a Rectangular wave guide:-
The following are the characteristics Of $T \in$ and TM waves in a Rectangular wave guide:
(1) Cut-off frequency $\left(f_{c}\right)$
(2) Cut-off Wavelength $\left(\lambda_{c}\right)$
(3) Guided Wavelength ( $\lambda_{g}$ )
(4) Phase velocity $\left(V_{p}\right)$
(5) Group velocity ( Vg )
(6) Wave impedance ( $\eta$ )
(1) cut-off frequency $\left(f_{c}\right)$ :-

It is defined as "the frequency at which the propagation constant $(r)$ of a rectangul waveguide becomes zero".

We know that

$$
\begin{aligned}
& h^{2}=r^{2}+\omega^{2} \mu \varepsilon \rightarrow \text { (1) } \\
& h^{2}=A^{2}+B^{2} \longrightarrow \text { (2) }
\end{aligned}
$$

from (1); $\quad r^{2}=h^{2}-\omega^{2} \mu \varepsilon$

$$
\begin{aligned}
& =\sqrt{h^{2}-\omega \mu \varepsilon} \\
& =\sqrt{A^{2}+B^{2}-\omega^{2} \mu \varepsilon} \\
& =\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \varepsilon} \quad\left(\because A= \pm \frac{m \pi}{a}\right) \\
& B= \pm \frac{n \pi}{b}
\end{aligned}
$$

At $f_{=}=f_{c}$ (or) $\omega=\omega_{c} \Rightarrow \gamma=0$

$$
\begin{aligned}
& \Rightarrow 0=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega_{c}^{2} \jmath^{2}} \\
& \Rightarrow \omega_{c} \sqrt{\mu \varepsilon}=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \\
& \Rightarrow \omega_{c}=\frac{1}{\sqrt{\mu \varepsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \\
& \Rightarrow 2 \pi f_{c}=\frac{1}{\sqrt{\mu \varepsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \\
& \Rightarrow f_{c}=\frac{1}{2 \pi \sqrt{\mu \varepsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \\
& \Rightarrow f_{c}=\frac{c \not \pi}{2 \pi} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}\left(\because c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}\right) \\
& \Rightarrow f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \\
& \therefore f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} .
\end{aligned}
$$

$\underline{T \epsilon_{10}:-} \quad f_{c}=\frac{c}{2} \sqrt{\left(\frac{1}{a}\right)^{2}+0}=\frac{c}{2 a}$
$T \epsilon_{01:-} \quad f_{c}=\frac{c}{2} \sqrt{0+\left(\frac{1}{b}\right)^{2}}=\frac{c}{2 b}$
$\underline{T \epsilon_{11}}:-\quad f_{c}=\frac{c}{2} \sqrt{\left(\frac{1}{a}\right)^{w}+\left(\frac{1}{b}\right)^{2}}$
TM 10 :- doesnot exist
TMO1 :- doesnot exist
$T M_{11}:-f_{c}=\frac{C}{2} \sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}}$
Dominant mode:-
Consider a rectangular waveguide $\hat{b}$ with width ' $a$ ' and height ' $b$ '. ' $\downarrow$
For all Rectangular waveguides width is always greater than height ie; $(a>b)$. The mode in which the cut-off frequency $\left(f_{c}\right)$ is lesson
minimum is referred to as, "Dominant mode". From the derived expressions, it is clear that ' $f_{c}$ incase of $T \epsilon_{10}$ mode af TM11 mode arelis minimum. Hence, $T \epsilon_{10}$ mode and $T M_{11}$ modes are referred to as Dominant modes. mode indirectly You amp provided with the values of $m \& n$.
Degenerative modes:-
Modes whose cut-off frequencies are same are referred to as Degenerative modes.

$$
e g:-T \epsilon_{12} \& T \epsilon_{21}
$$

Note:- For a Wave to enter into a rectangular Waveguide, ' $f$ ' should be greater than ' $f$ '

$$
\text { i.e., } f>f_{c}
$$

Heres $f \rightarrow$ frequency of wave

$$
f_{c} \rightarrow \text { cut-off frequency }
$$

(2) cut-off Wavelength $\left(\lambda_{c}\right)$ :-

It is defined as " the wavelength at which the propagation constant $(\gamma)$ of a rectanguly waveguide becomes zero":

We have,

$$
\begin{aligned}
& f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \\
& \Rightarrow \frac{c}{\lambda_{c}}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \quad\binom{\because c=f \lambda}{f=c / \lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \lambda_{c}=\frac{2}{\sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}} \\
& \therefore \lambda_{c}=\frac{2}{\sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{4}}}
\end{aligned}
$$

note:-
$f>f_{c} \rightarrow$ Wavepropagation exists

$$
\lambda<\lambda_{c} \longrightarrow
$$

(3) Guided wavelength $\left(\lambda_{g}\right)$ :-

It is defined as "the distance travelled by a wave, inorder to produce a phaseshift of $360^{\circ}$ (or) $2 \pi$ radians".

- We know that

$$
\begin{align*}
& \beta=\frac{2 \pi}{x} \\
& \Rightarrow \lambda=\frac{2 \pi}{\beta} \\
& \Rightarrow \lambda g=\frac{2 \pi}{\beta} \tag{1}
\end{align*}
$$

We also know that,

$$
\begin{aligned}
& h^{2}=r^{2}+\omega^{2} \mu \varepsilon \longrightarrow(2) \\
& h^{2}=A^{2}+B^{2} \longrightarrow(3) \\
& \gamma=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega_{j} \mu \varepsilon} \\
& \Rightarrow \alpha+j \beta=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \varepsilon} \\
& \text { if } \alpha=0 \text { then, } \\
& \Rightarrow j \beta=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \varepsilon} \\
& \text { At } \omega=\omega_{c} \Rightarrow r=0
\end{aligned}
$$

from (2) we can write

$$
\begin{equation*}
h^{2}=\omega_{c}^{2} \mu \varepsilon \tag{4}
\end{equation*}
$$

from eqn's-(2) aid (3)

$$
\begin{aligned}
& j \beta=\sqrt{\omega_{c}^{2} \mu \varepsilon-\omega^{2} \mu \varepsilon} \\
\Rightarrow & j \beta=\sqrt{-\omega^{2} \mu \varepsilon\left(1-\frac{\omega_{c}^{2}}{\omega^{2}}\right)} \\
\Rightarrow & j_{\beta}=j \omega \sqrt{\mu \varepsilon} \sqrt{1-\frac{\omega_{c}^{2}}{\omega^{2}}} \\
\Rightarrow & \beta=\omega \sqrt{\mu \varepsilon} \sqrt{1-\left(\frac{2 \pi f \varepsilon}{2 \pi f}\right)^{2}} \\
\Rightarrow & \beta=\omega \sqrt{\mu \varepsilon} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \\
\Rightarrow & \beta=\frac{2 \pi f}{c} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad\left(\because \frac{\omega=2 \pi f}{c=\frac{1}{\sqrt{\mu} \varepsilon_{0}}}\right) \\
\therefore & \beta=\frac{2 \pi f}{c} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}
\end{aligned}
$$

from (1); $\lambda_{g}=\frac{2 \pi}{\beta}$

$$
\begin{aligned}
& \Rightarrow \lambda_{g}=\frac{2 \pi}{\frac{2 \pi f}{c} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}} \\
& \Rightarrow \lambda_{g}=\frac{c}{f \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}} \\
& \Rightarrow \lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}} \\
& \therefore \lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}}
\end{aligned}
$$

$$
\begin{array}{r}
c=f \lambda \\
\Rightarrow \begin{array}{r}
f=\frac{c}{\lambda} \\
(o n) \\
\lambda=\frac{c}{f}
\end{array}
\end{array}
$$

Relation between $\lambda_{g}, \lambda_{0}$ and $\lambda_{c}:-$
We have,

$$
\begin{aligned}
& \lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}} \\
\Rightarrow & \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}=\frac{\lambda_{0}}{\lambda_{g}} \\
\Rightarrow & 1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}=\left(\frac{\lambda_{0}}{\lambda_{g}}\right)^{2} \\
\Rightarrow & 1=\left(\frac{\lambda_{0}}{\lambda_{g}}\right)^{2}+\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}=\lambda_{0}^{2}\left[\frac{1}{\lambda_{g}}+\frac{1}{\lambda_{c}^{2}}\right] \\
\Rightarrow & \frac{1}{\lambda_{0}^{2}}=\frac{1}{\lambda_{g}^{2}}+\frac{1}{\lambda_{c}^{2}} \\
\therefore & \frac{1}{\lambda_{0}^{2}}=\frac{1}{\lambda_{g}^{2}}+\frac{1}{\lambda_{c}^{2}}
\end{aligned}
$$

note:-

$$
f>f_{c} \& \lambda<\lambda_{c} \longrightarrow \text { Wavepropagation exists }
$$

We have, $\lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}}$

$$
\lambda_{g}>\lambda_{0}
$$

(4) Phase velocity ( $v_{p}$ ):-

It is defined as the rate at which, the wave changes its Phase".
(or)
It is the velocity with which the Phase of a wave changes.

We know that

$$
\begin{aligned}
& \lambda_{g}=V_{p} t=\frac{V_{p}}{f} \\
\Rightarrow & \frac{2 \pi}{\beta}=\frac{V_{p}}{f}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v_{p}=\frac{2 \pi f}{\beta} \\
& \Rightarrow V_{p}=\frac{\omega}{\beta} \\
& \Rightarrow V_{p}=\frac{\omega}{\omega \sqrt{\mu \varepsilon} \sqrt{1-\frac{\omega_{c}}{\omega^{2}}}} \\
& \Rightarrow V_{p}=\frac{1}{\sqrt{\mu \varepsilon} \sqrt{1-\omega_{c}^{2} / \omega^{2}}} \\
& \Rightarrow V_{p}=\frac{c}{\sqrt{1-\left(f_{c} / f\right)^{2}}} \\
& \Rightarrow V_{p}=\frac{c}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}} \\
& \therefore V_{p}=\frac{c}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}}
\end{aligned}
$$

note:-
$f>f_{c} \rightarrow$ Wavepropagation exist
$V_{P}>C \longrightarrow$ Phase velocity is always greater
(5) Group velocity $\left(\mathrm{V}_{g}\right)$ :than velocity of light.

It is defined as" the rate at which a wave Propagates through a rectangular waveguide".

$$
v_{g}=\frac{d \omega}{d \beta}
$$

We know that

$$
\begin{aligned}
& \beta=\sqrt{\omega_{c}^{2} \mu \varepsilon-\omega^{2} \mu \varepsilon} \\
& \Rightarrow \frac{d \beta}{d \omega}=\frac{1}{\not 2 \sqrt{\omega_{c}^{2} \mu \varepsilon-\omega^{2} \mu \varepsilon}} \cdot 2 \omega \mu \varepsilon \\
& \Rightarrow \frac{d \beta}{d \omega}=\frac{\omega \mu \varepsilon}{\sqrt{\omega_{c}^{2} \mu \varepsilon-\omega^{2} \mu \varepsilon}} \\
& \Rightarrow \frac{d \omega}{d \beta}=\frac{\omega \sqrt{\mu \varepsilon} \sqrt{1-\frac{\omega_{c}^{2}}{\omega^{2}}}}{\omega \mu \varepsilon^{2} \sqrt{\mu \varepsilon}} \\
& \Rightarrow \frac{d \omega}{d \beta}=\frac{1}{\sqrt{\mu \varepsilon}} \sqrt{1-\frac{\omega_{c}^{2}}{\omega^{2}}} \\
& \Rightarrow \frac{d \omega}{d \beta}=c \sqrt{1-\frac{\omega_{c}^{2}}{\omega^{2}}}=c \sqrt{1-\left(\frac{f c c}{f}\right)^{2}} \\
& \therefore \frac{d \omega}{d \beta}=c \sqrt{1-\left(\frac{f c}{f}\right)^{2}} \\
& \therefore \frac{d \omega}{d \beta}=c \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}} \\
& V \cdot v g=c^{2}
\end{aligned}
$$

$\xrightarrow{\text { note:- }} f>f_{c} \longrightarrow$ wavepropagation exists
$v_{p} \gg v_{c} \rightarrow$ Phase velocity is always greater than light velocity.
$v_{g} \ll v_{c} \longrightarrow$ group velocity is always less than light velocity.
(6) Impedance $(n)$ :-
$\rightarrow$ It is different for $T \in$ wave and $T M \omega_{a_{k}}$
$\rightarrow$ It is defined as "the ratio of strength of electric field to the strength of magnetic field."

$$
\eta=\frac{\epsilon_{x}}{H_{y}}=-\frac{\epsilon_{y}}{H_{x}}
$$

For TE

$$
\left.\Rightarrow \eta_{T \epsilon}=\frac{\frac{f j \omega}{h y} \frac{\partial H / 2}{\partial y}}{f \frac{r}{h^{y}} \frac{\partial H z}{\partial y}}\left(\because \epsilon_{2}=0 \text { for } a\right) \text { Te wave }\right)
$$

$$
\Rightarrow \quad \eta_{T \epsilon}=\frac{j \omega \mu}{\gamma}
$$

$$
\gamma=\alpha+j \beta
$$

if $\alpha=0$ then $\gamma=j \beta$
now,

$$
\begin{aligned}
& \eta_{T \bar{\epsilon}}=\frac{j \omega \mu}{j \beta}=\frac{\omega \mu}{\beta}=\frac{\omega_{\mu} \mu \sqrt{\mu}}{\omega \sqrt{\mu \varepsilon} \sqrt{1-\left(\omega_{c} / \omega^{2}\right)}} \\
\Rightarrow & \eta_{T \in}=\frac{\sqrt{\frac{\mu}{\varepsilon}}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}} \\
\Rightarrow & \eta_{T \epsilon}=\frac{\eta}{\sqrt{1-\left(\frac{\lambda_{0}}{\lambda c}\right)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { raven } \\
& \eta_{T \epsilon}=\frac{-r}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}-\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y} \\
& -\frac{r}{h^{2}} \frac{\partial H_{2}}{\partial y}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{2}}{\partial x}
\end{aligned}
$$

$$
\therefore \eta_{T_{\epsilon}}=\frac{n}{\sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}}
$$

Here, $n \rightarrow$ freespace impedance $=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\sqrt{\frac{4 \pi \times 10^{-7}}{8854 \times 10^{2}}}$
note:-

$$
=120 \pi \text { on } 377 \Omega
$$

$f>f_{c}$ then $\eta_{T E}>\eta$
For TM wave:-

$$
\begin{aligned}
& \eta_{T M}=-\frac{r}{h^{2}} \frac{\partial C_{2}}{\partial x}-\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y} \\
& -\frac{r}{h^{2}} \frac{\partial H_{2}}{\partial y}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{2}}{\partial x} \\
& \Rightarrow \eta_{\text {TM }}=\frac{\frac{-\gamma}{h^{y}} \frac{\partial \epsilon}{\partial x}}{\frac{-j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon z}{\partial x}} \text {. } \\
& \text { ( } \because H_{2}=0 \text { for } a \\
& \text { TM wave) } \\
& \Rightarrow \eta_{T M}=\frac{\gamma}{j \omega \varepsilon} \\
& \Rightarrow \eta_{T M}=\frac{\partial \beta}{j \omega \varepsilon}=\frac{\beta}{\omega \varepsilon}=\frac{\omega \sqrt{\mu e} \sqrt{1-\frac{\omega_{\varepsilon}^{2}}{\omega^{2}}}}{\omega \varepsilon} \\
& \Rightarrow \eta_{T M}=\sqrt{\frac{\mu}{\varepsilon}} \sqrt{1-\frac{\omega_{c}^{2}}{\omega^{2}}} \\
& \Rightarrow n_{T M}=\eta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}=\eta \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}} \\
& \therefore \eta_{\text {TM }}=n \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}
\end{aligned}
$$

note:-
$f>f_{c}$ then $n_{T M}<n$

For TEM wave:-

$$
\begin{aligned}
& \eta_{\text {TAM }}=\frac{-\frac{r}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}-\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial y}}{\frac{-r}{h^{2}} \frac{\partial \epsilon_{z}}{\partial y}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial x}} \\
& \Rightarrow \eta_{\text {TEN }}=\frac{0}{a}=0 \quad \\
& \text { ut YOU are not SuPPle } \quad \begin{array}{l}
\text { ( } \epsilon_{z}=H_{z}=0 \text { for }
\end{array} \\
& \text { TEM, wave. }
\end{aligned}
$$

But You are not supposed to write, $\eta_{\text {TEN }}=0$. The impedance of a TEM $\mathrm{cos}_{0}$ is equal to freespace impedance.

$$
\therefore \eta_{T E M}=n=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=120 \pi \text { (or) } 377 \Omega
$$

Summary:-

1. $f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}$
2. $\lambda_{c}=\frac{2}{\sqrt{(m / a)^{2}+(n / b)^{2}}}$
3. $\lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}}$
4. $\frac{1}{\lambda_{0}^{2}}=\frac{1}{\lambda_{g}^{2}}+\frac{1}{\lambda_{c}^{2}}$
5. $v_{p}=\frac{c}{\sqrt{1-\left(x_{0} / \lambda_{c}\right)^{2}}}$
6. $v_{g}=\frac{d \omega}{d \beta}=c \sqrt{1-\left(\frac{f_{c}}{t}\right)^{2}}$ (or) $c \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}$
7. $\eta_{T E}=\frac{n}{\sqrt{1-\left(r_{0} / \lambda_{c}\right)^{2}}}$
8. $\eta_{T M}=\eta \sqrt{1-\left(\lambda_{0} / \gamma_{c}\right)^{2}}$

Power Transmission in Rectangular waveguides:-
$\rightarrow$ Assume that a Rectangular waveguide is terminated in such a way that there is no reflection of energy from its walls.
$\rightarrow$ The waveguide is infinitely long compared to wavelength.

$$
P_{t r}=\oint P d s \rightarrow \text { (1) }
$$

Here, $P_{t r} \rightarrow$ transmitted Power
From Power poyinting theorem

$$
P=\bar{\epsilon} \times H^{*} \longrightarrow \text { (2) }
$$

from (1) and (2); $P_{t r}=\oint \bar{E} \times H^{*} d s \rightarrow$ (3)
Always we have to consider average Power.

$$
\begin{aligned}
\therefore P_{\text {avg }} & =\frac{1}{2} P_{t r} \\
P_{\text {avg }} & =\frac{1}{2} \oint \bar{\epsilon} \times H^{*} d s \rightarrow \text { (4) }
\end{aligned}
$$

We know that

$$
\begin{equation*}
\eta=\frac{E_{x}}{H y} \Rightarrow H_{y}=\frac{\epsilon_{x}}{\eta} \rightarrow \text { (5) } \tag{5}
\end{equation*}
$$

from (3) and (5);

$$
\begin{equation*}
P_{t r}=\oint \frac{|E|^{2}}{n} d s \tag{or}
\end{equation*}
$$

from (4) and (5),

$$
\begin{aligned}
& P_{\text {avg }}=\frac{1}{2} \oint \frac{|\epsilon|^{2}}{n} d s=\frac{1}{2} \oint \frac{|H|^{2}}{n} d s \\
& P_{\text {avg }}=\frac{1}{2} \iint \frac{|\epsilon|^{2}}{n} d x d y=\frac{1}{2} \iint \frac{|H|^{2}}{n} d x d y
\end{aligned}
$$

For TE Wave:-

$$
\begin{aligned}
P_{a v g} & =\frac{1}{2} \iint \frac{|\epsilon|^{2}}{\eta_{T E}} d x d y \\
& =\frac{1}{2} \iint \frac{|\epsilon|^{2}}{\frac{n}{\sqrt{1-\left(x_{0} / x_{c}\right)^{2}}}} d x d y \\
& =\frac{1}{2} \iint \frac{|\epsilon|^{2}}{n} \cdot \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}} d x d y
\end{aligned}
$$

For TM wave:-

$$
\begin{aligned}
P_{t r} & =\frac{1}{2} \iint \frac{|\epsilon|^{2}}{\eta_{T M}} d x d y \\
P_{t r} & =\frac{1}{2} \iint \eta_{T M}|H|^{2} d x d y \\
& =\frac{1}{2} \iint \eta \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{0}}\right)^{2}}|H|^{2} d x d y
\end{aligned}
$$

PowerLosses in Rectangular waveguide:-
Consider a Rectangular waveguide. There are two types of Losses:
(i) Losses in the guided walls
(ii) Losses due to dielectric material
(i) Losses in the guided walls:-

Powerloss may occur at conducting (guided) wall of the waveguide. If the conductivity of the guided walls of the waveguide is infinite, there there would be no Power loss. There would be no reflection of energy.
But ideally, this is not Possible. if $\sigma=\infty$, then from ohm'slaw ${ }^{\sigma=\infty}$

$$
\begin{aligned}
& V=I R \\
\Rightarrow & I=\frac{V}{R} \\
\Rightarrow & I=\frac{V}{0}=\infty
\end{aligned}
$$

If the conductivity is less than infinite $(\infty)$, there would be some Power loss in the waveguide
(ii) Losses due to dielectric material:-

A Rectangular waveguide is a hollow metallic tube, consisting of two Parallel conducting plates in between which the space is filled with air. Air acts as a dielectric medium. The will be some loss in Power due to this dielectric medium.
It is know that, for a wave Propagate in a rectangular waveguide, $f>f_{c}$. Suppose that $f<f_{c}:-$

Propagation

$$
\begin{aligned}
& \text { opagation } \\
& \text { Constant }
\end{aligned}(\gamma)=\alpha+j \beta
$$

When $f<f_{c}$, the imaginary Part (j $\beta$ ) gets vanished and the wave is said to be fully attenuated.

$$
\text { ieee, } \gamma=\alpha
$$

We know that

$$
\begin{aligned}
& h^{2}=r^{2}+\omega^{2} \mu \varepsilon \\
\Rightarrow & r^{2}=h^{2}-w^{2} \mu \varepsilon \\
\Rightarrow & r=\sqrt{\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}-w^{2} \mu \varepsilon} \\
\Rightarrow & r=\operatorname{Rc}\left\{\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{h}\right)^{2}-w^{2} \mu \varepsilon}\right\} \equiv \alpha
\end{aligned}
$$

for $f<f_{c}, \quad \alpha=\frac{54.6}{\lambda_{c}}$
$f>f_{c}:-$
Wavepropagation exists through the Rectangular waveguide.

For a dielectric material,

$$
\begin{gathered}
\text { Loss tangent }=\left|\frac{\sigma}{\omega \varepsilon}\right| \ll 1 \\
\Rightarrow \sigma \ll \omega \varepsilon
\end{gathered}
$$

Attenuation due to dielectric medium is given by,

$$
\begin{aligned}
\alpha d & =\frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}} \\
\Rightarrow \alpha_{d} & =\frac{\sigma}{2} \eta \\
\therefore \alpha_{d} & =\frac{\sigma}{2}(\eta)
\end{aligned}
$$

Here, $\eta \rightarrow$ freespace impe dance $=377 \Omega$ (on) $120 \pi$
Powerloss due to imperfect dielectric:- fitinod

$$
\begin{aligned}
\alpha_{g} & =\frac{P_{L}}{2 P_{t r}} \\
\Rightarrow \alpha_{g} & =\frac{R_{s} \oint_{s}|H|^{2} d s}{2 \eta_{g} \oint_{s}|H|^{2} d s} \\
\therefore \alpha & =\frac{R_{s} \oint_{s}|H|^{2} d s}{2 \eta_{g} \oint_{s}|H|^{2} d s}
\end{aligned}
$$

Here, $\alpha g \rightarrow$ Attenuation due to guided walls
Pr $\rightarrow$ Transmitted Power
$\mathrm{P}_{\mathrm{L}} \rightarrow$ Path Loss - Losses occuring in the Path followed by wave in the waveguide

UNIT III:- Microwave tubes
Limitations and Losses of conventional tubes at microwave frewencies:-

Conventional tubes:-
The triodes, Pentrodes and tetrodes are known as Conventional tubes. These tubers are only useful at low microwave frequencies. The vaccum tube Was the first active electronic device, capable of actually controlling and amplifying a small signal. small vacuum tubes were available for microwave and millivolt signals but have been replaced by transistors.

Limitations of conventional tubes at microwave frequencies:-
$\rightarrow$ The size of electronic devices required for generation of microwave energy, becomes very smaller at microwave frewencies.
$\rightarrow$ Because of small size, these devices increased the noise levels and results in lesser Power handling capacity.
$\rightarrow$ So, at the microwave frequencies, the microwave tubes are used because they can provide higher output power lesser noise, better reliability with reduced output powerlevels. Due to some characteristics the conventional tubes and transistors are not used at high frequencies, as mentioned below:
a) interelectrode capacitances
b) Lead inductance effect
c) Gain bandwidth limitation
d) Transit time effect
e) Skin effect
f) Dielectric Losses
a) Interelectrode caPacitance :-
$\rightarrow$ The figure below shows the interelectrode CaPacitance between the grid and the cathode $\left(c_{g k}\right)$ in Parallel with the signal source.

$\rightarrow$ The reactance of the capacitor is given by the relation:

$$
x_{c}=\frac{1}{2 \pi f c}
$$

$\rightarrow$ As the interelectrode capacitance decreases, the reactance of the interelectrodes increases
$\rightarrow$ As: the frequency of the input signal increases the effective grid to cathode impedance of the tube decreases because of a decrease in the reactance of the interelectrode capacitance
$\rightarrow$ When the signal frewency is greater than 100 MHz , then the reactance of the grid to Cathode Capacitance is so small that much of the signal is short-circuited with the tube.
$\rightarrow$ Since the electrode Capacitances are effectively in Parallel With the tuned circuits; as shown in the above circuit, they will also affect the frequency at which the tuned circuit resonates.
$\rightarrow$ This effect is minimized by using the smaller electrodes and by increasing the distance between electrodes.
b) Lead inductance effect:-
$\rightarrow$ The lead inductances within a tube are effectively in Parallel with the interelectrode caPacitances.
$\rightarrow$ The reactance of the inductor is given by the relation:

$$
X_{L}=2 \pi f L
$$

$\rightarrow$ As the lead inductance increases, the reactance of the circuit also increases.
$\rightarrow$ This effect raise the frequency limit of the tube.
$\rightarrow$ The inductance of cathode lead is common to both the grid and plate circuits.
$\rightarrow$ This Provides a Path for degenerative feedback Which reduces the overall circuit efficiency.
$\rightarrow$ This effect is minimized by using the larger sized short leads wittiout base pins.

(iii) Gain bandwidth limitation:-

To achieve the maximum gain, the vacuum tubes generally use the circuit as shown below:

fig:- Equivalent circuit
$\rightarrow$ Replacing $R_{P}$ and $R_{L}$ by $R$.

$$
\begin{aligned}
& R=\frac{1}{R_{P}}+\frac{1}{R_{L}} \\
& G=\frac{V_{0}(S)}{V_{i}(S)}=z_{0}(s) \\
& \frac{1}{Z_{0}(s)}=Y_{0}(s)=C S+\frac{1}{L S}+\frac{1}{R}=\frac{s^{2} L C R+L S+R}{R L S} \\
\Rightarrow & Z_{0}(s)=\frac{s / C}{S^{2}+\frac{3 S}{C R}+\frac{1}{L C}}
\end{aligned}
$$

$\rightarrow$ From the characteristic equation of the denominator, the roots give the values of lowest and highest ad frequencies.

$$
\begin{aligned}
\omega_{1} & =-\frac{G}{2 c}-\sqrt{\left(\frac{G}{2 c}\right)^{2}-\frac{1}{L C}} \\
\omega_{n} & =-\frac{G}{2 c}+\sqrt{\left(\frac{G}{2 c}\right)^{2}+\left(-\frac{1}{L c}\right)} \\
& =-\frac{G}{2 c}+\sqrt{\left(\frac{G}{2 c}\right)^{2}-\left(\frac{1}{L C}\right)}
\end{aligned}
$$

$G=\frac{1}{R}(\because$ conductance is always the $)$ reciprocal of Resistance

Bandwidth $=\omega_{n}-\omega_{1}=\frac{G}{c} w$ here $\left(\frac{G}{2 c}\right)^{2}>\frac{1}{L C}$.
The maximum gain at resonance is given by,

$$
A_{\text {max }}=\frac{g_{m}}{G}
$$

$\therefore$ Gain bandwidth Product $=A_{\text {max }}$. Bandwidth

$$
\begin{aligned}
& =\frac{g_{m}}{G} \times \frac{G}{c} \\
& =\frac{g_{m}}{C}
\end{aligned}
$$

$\rightarrow$ As shown in the above relation, the GainBandwidth Product is independent of frequency.
$\rightarrow$ Higher gain for a given tube is achieved only by using the narrow bandwidth.
$\rightarrow$ This restriction is applicable only to its resonant circuit.
$\rightarrow$ To obtain an overall high gain over a broad bandwidth, in microwave devices, slow wave Structures are Used.
(d) Transit time effect:-
$\rightarrow$ Transit time is the time required for electrons to travel from the cathode to the anode plate.
$\rightarrow$ If we consider the circuit of a simple vaccum tube as shown in the figure, where ' $d$ ' is the distance between two plates, "ip is the plate Current, $V$ ' is applied. input voltage, $V_{0}^{\prime}$ is the output voltage.
 effect.

Calculation For Transit Time $1 h$
By definition, transit time is given by,

$$
\tau=\frac{d}{v_{0}} \text { Where } v_{0} \text { is the velocity of } c \text {. }
$$

Static energy of electrons $=\mathrm{eV}$
Kinetic energy of electrons $=\mathrm{eV}$
Kinetic energy of electrons $=\frac{1}{2} m v_{0}^{2}$
We know that under equilibrium stats, the Static energy of electrons is equal to the Kinetic energy of electrons.

$$
\begin{array}{r}
\quad e v=\frac{1}{2} m v_{0}^{2} \\
\Rightarrow v_{0}=\sqrt{\frac{2 c v}{m}} \\
\therefore \quad \\
\tau=\frac{d}{\sqrt{\frac{2 c v}{m}}}
\end{array}
$$

$\rightarrow$ At low frequencies, the transit time is negligible because distance between anode and cathode is very small.
$\rightarrow$ But at higher frequencies, the transit time is large as compared to the Period: of microwave signal. The potential between the cathode and grid may alternate from 10 to 100 times during the electron transmit-
$\rightarrow$ The grid Potential during the negative half cycle thus removes energy that was given to the electron during positive half cycle. Consequently, the electrons may oscillate back and forth in the cathode grid space (or) return to the cathode.
$\rightarrow$ The overall effect-lresult of transit time effect is to reduce the overall efficiency of the vaccume tube.
$\rightarrow$ To minimise this effect the separation between electrodes can be decreased and the plate to cathode Potential ' $V$ ' can be increased.
(C) Skin effect:-
$\rightarrow$ This effect introduces at high frequencies, When the current flows from small crosssectional area to outer surface of the conductor.
$\rightarrow$ As given in the figure below, " $s$ " is the Skindepth (wall thickness of the conductor) and Acff is the effective reaver which the. current flows.

$$
\begin{gathered}
\text { Skindepth }=S=\sqrt{2 / \omega \mu \sigma} \\
S \propto \frac{1}{\sqrt{\omega}} \text { and } \\
\delta \propto A_{\text {eff }} \\
A_{\text {eff }} \propto \frac{1}{\sqrt{f}}
\end{gathered}
$$

Resistance is given by the relation,

$$
\begin{aligned}
& R=\frac{P l}{A_{e f f}} \\
& R=P l \cdot \sqrt{f}
\end{aligned}
$$

As the frequency increases the resistance of the conductor increases, due to the higher frequency losses are Produced.
(f) Dielectric losses:-
$\rightarrow$ These are different insulating materials which are used as a glass envelope, silicon Plastic encapsulations in different microwave, devices. The loss in any of these material is in general related to Power loss and is given by,

$$
P=\pi f \cdot v_{0}^{2} \varepsilon_{r} \tan (-)
$$

Where $\quad \varepsilon_{r} \rightarrow$ Relative Permitivity of dielectric
$\delta \rightarrow$ skindepth
$P \rightarrow$ Power loss
$\tan (\sigma) \rightarrow$ Loss angle of dielectric
$\rightarrow$ At higher frequencies, the Power loss increases To eliminate these losses the surface area of glass should be decreased and the tube base should be eliminated.
Re-entrant cavity Resonators:-
$\rightarrow$ At frequencies above 3 MHz , transistorbased oscillators and amplifiers become obsolete due to the "skineffect" and "stray reactances".
$\rightarrow$ To efficiently generate oscillations and amplification at higher frequencies, cavity resonators are used instead.
$\rightarrow$ Increased bandwidth is the main advantage of re-entrant cavity resonators. Now, Let us sec about cavity resonators.

What are Cavity- Resonators:-
$\rightarrow$ Cavity resonators are hollow, closed compartments made of conducting material.
$\rightarrow$ RF signals are given as input and output Within the compartment through input and output Ports.
$\rightarrow$ The compartment is analogous to an inductor and its mouth acts as the capacitor for radio frequencies.
$\rightarrow$ There are several types of cavity resonators, characterized based on their structure and function:
() Regulated cavity resonators
$\odot$ Unregulated cavity resonators
(-) Co-axial cavity resonators

- Capacitive cavity resonators
(-) Waveguide cavity resonators
(-) Re-entrant Cavityriesonators
$\rightarrow$ Re-entrant cavity resonators are used for Oscillation filtering and amplification in the $3 \mathrm{MHz}-300 \mathrm{MHZ}$ frequency range.
The structure of a Re-entrant Cavity Resonator
$\rightarrow$ A re-entrant Cavity resonator is made from two cavity resonators, connected Perpendicularly by another rectangular waveguide at both ends. Increased bandwidth is the main advantage of the re-cntrant cavity resonator, which makes this type of resonator applicable as a wide-band amplifier and oscillator in the frequency range of 3 MHz to 300 MHz .
$\rightarrow$ Efficient energy transfer occurs' from the election beam to the high-quality factor cavity resonator when electrons Cross the cavity, field regionginminimum time.
$\rightarrow$ The electric field is concentrated across gap ' $g$ ' on the capacitance region allow; the electrons to flow through it:
$\rightarrow$ Electric energy stored in the Cavity can be increased by increasing. the capacitane, $c$. This type of. re-entrant cavity resonator is tuned by varying the short plunger. The resonant, length can be varied by using the tshort-plunger as well.
$\rightarrow$ If the re-entrant cavity's length is greater than the gap thickness, then such a sturucture would be considered a co-axial line with the radii of the inner and outer conductor.
$\rightarrow$ At resonance frequency, the gap capacita
A (C) and the co-axial line below the gap provide reactances, which are equal and opposite.
$\rightarrow$ Cavity resonators are metallic boundaries extending to interior of the cavity.


Re-entrant Cavity resonators are similar to co-axial line shorted at 2 ends and joined at center by capacitor.


Classification of Microwave tubes:-

${ }_{*}^{*} * \xlongequal{\text { TWo Cavity }}$ Klystron Amplifier:-
Klystron:- A klystron is a vacuum tube that can be used as oscillator (or) Amplifier.

TWo Cavity Klystron Amplifier:-
TWo Cavity klystron Amplifier is basically a velocity modulated tube. A simplified diagram of Two cavity Klystron Amplifier is shown below:
Construction:-

fig:- Two Cavity klystron Amplifier
$\rightarrow$ The Rectangular part in the above diagram is a glass tube and is known as "klystron tube" vaccum tube".
$\rightarrow$ Based on required application, it can be used "either ass an oscillator (or) Amplifier
$\rightarrow$ Here, the klystron tube is used as an Amplifier; with two cavities and hence it is known as Two cavity klystron Amplifier
$\rightarrow$ one end of the glass tube is connected to -ve supply while the other end of the tube is connected to trove supply.
$\rightarrow$ The -ve terminal is connected to Electrongen Which is referred to as cathode and the tee terminal is connected to collector Which is referred to as anode.
$\rightarrow$ The Two Cavity klystron Amplifier consists of two cavities namely:-
(1) Buncher cavity (input cavity)
(2) Catcher Cavity (output Cavity)
$\rightarrow$ The gap between, the two cavities is referred to as "Drift space".
$\rightarrow$ The gap between electron gun and the Buncher cavity is referred to as "GapA".
$\rightarrow$ The gap between the catcher cavity ad collector is referred to as "Gap B".
OPeration:-
$\rightarrow$ RF signals are applied as input at Buncher cavity and their Amplified version is collected at Catcher cavity. Now, Let US see how this happens in the Amplifier.
$\rightarrow$ When a voltage ' $v$ ' is applied across the terminals, the electron gun starts emitting electrons.
$\rightarrow$ These electrons travel from cathode to Anode. Meanwhile, if at all an RF signal is applied as input to the Bunche Cavity and if the applied RF signal comes in contact with the moving $e^{-}$, the velocity of RF signal increases.
$\rightarrow$ on the other hand, the velocity of the applied RF frequency, increases resulting in the amplification of the signal.
$\rightarrow$ The Amplified signal is collected at Election bunches, which then travels throug Catcher cavity and is finally, collected at the collector.
$\rightarrow$ When the electrons are travelling from cathode to Anode, they have to Pass through 3 stages:- (i) Gap A
(ii) Drift sPace
(iii) Gap B
$\rightarrow$ The electrons collected at collector. are referred to as "Early electrons" $\left(e_{e}\right)$.
$\rightarrow$ The electrons between Bunchier Cavity and catcher cavity are referred to as "Reference elections" $\left(e_{R}\right)$."
$\rightarrow$ The elections between the electrongun and buncher cavity are referred to as "Late electrons" (el).

fig:- Apple gate diagram of a Klystron Amplifier
Applications of Two Cavity Klystron Amplifier:* TV transmitters.

* Radar communications
* Satellite communications

TWO CAVITY KLYSTRON AMPLIFIER - Velocity Modulation
$\rightarrow$ It is known that the Two Cavity klystron Amplifier consists of two cavities namely:-(Buncher Cavity
(ii) Cattcher cavity
$\rightarrow$ The RF signal which is to be amplified 4 is given to Muncher Cavity. Let the act input signal be;:

$$
V_{S}=V_{1} \sin \omega t
$$

$\rightarrow$ The amplified version of this input signal is taken at catcher cavity.
$\rightarrow$ The schematic. diagram of a two-cavity Klystron. Amplifier is shown below:-


Sig:- Schematic diagram of a Two cavity Klystron Amplifier
$\rightarrow$ There is a heater in the diagram. When a voltage $v_{0}$ is applied to cathode the heater heats the cathode and hence the cathode emitter electrons.
$\rightarrow$ These electrons are accelerated by anode and travel towards Buncher cavity:
$\rightarrow$ Let the initial velocity of emitted electrons be $v_{0}$ once they leave the bunchier Cavity/ the cavity gap also known as Gap, the electrons are formed into Bunches. It is known as velocity

Modulation, Which is considered to be one of the basic working principles of Two cavity klystron. Amplifier. This velocity Modulation leads to Current modulation in further:
Velocity Modulation:-
The Variation in the Velocity of electrons while moving inside the Rectangular shaped glass tube (klystron tube) is known as velocity modulation. This velocity modulation Permits bunching of electrons While: Propagation so, the combined energy of bunched $e^{-}$is. transferred at the output thereby providing an amplified signal.
Distance scale:-
$d \rightarrow$ Gap $A$
$(L+d) \rightarrow$ Gap $A+$ driftspace
$(L+2 d) \rightarrow$ Gap $A+$ driftspace + Gap $B$
Time scale:-
$t_{0}--$ electron entering time of gap $A$ $t_{1} \cdots$ electron, leaving time of gap $A$ $t_{2} \ldots \rightarrow$ electron entering time of gaP $B$ $t_{3} \rightarrow-$ electron leaving time of gaP $B$
$\rightarrow I t$ is called "O-type (original type')'tob ${ }_{c}$ (Or) "Linear beam tube".

Linear beam tube indicates that the main Purpose of magnetic field hire is, to focus the election beam' to travel from cathode to collector.

Potential energy of $e^{-}$is given by,
Potential energy $=e V_{0}$
Here, $V_{0} \rightarrow$ cathode voltage
When the emitted $e^{-}$are accelerated by the anode, this potential energy is converted into kinetic energy. The kinetic energy associated with the accelerated electrons is given by,

$$
\text { Kinetic energy }=\frac{1}{2} m v_{0}^{2}
$$

from the above description we car Writs

$$
\left.\begin{array}{rl}
\text { Potential energy } & =\text { Kinetic energy } \\
e v_{0} & =\frac{1}{2} m v_{0}^{2}
\end{array} \quad \begin{array}{rl}
\frac{e}{m}=\frac{\text { charge of } e^{-}}{\text {moss of } e^{-}} \\
& =1.75 \times 10^{\circ} \mathrm{c} / \mathrm{k}
\end{array}\right]
$$

$\therefore$ Velocity of emitted

$$
\begin{aligned}
& \text { city of emitted } \\
& \text { electrons }\left(v_{0}\right)=0.593 \times 10^{6} \sqrt{v_{0}}(\mathrm{~m} / \mathrm{sec})
\end{aligned}
$$

Let the RF input be,
$V_{S}=V_{1} \sin \omega t$ Which is given to Buncher Cavity
Here, $V_{1} \ll V_{0}$ indicating that, the amplitude of the signal Which is to be amplified is very very less than Cathode voltage. (Let's say, $V_{0}(K V)$ and $V_{1}$ (volts)). Let us consider, three cases as below:
Casc(i):- $V_{S}=0$
When $V_{S}=0$ ie, no RF input is applied, the electrons travel with a velocity of $v_{0}$.
Case(ii):- Positive Half-cycle of RF input

if the gap voltage is positive ie, during the Positive half-cycle of applied RF input, the electrons are accelerated.

Case (ii):- Negative Half-cycle of RF input
if the gap voltage is negative ie, during the negative half-cycle of applied RF -input, the electrons are decelerated.

| $V_{s}=0$ | Unchanged <br> velocity |
| :---: | :---: |
| $\sim$ | velocity $\uparrow$ |
| $\ddots$ | velocity |

(Principle of operation)

Due to these changes in velocity, velocity modulation occurs and as a result, electrons Start forming into bunches within the drift space (L). These bunched electrons $a_{r}$ referred to as "Bunched election beam". Now the velocity of electrons is changed from $v_{0}$ to $v\left(t_{1}\right)$. Now, we have to findout. the changed velocity $v\left(t_{1}\right)$.
The graphical representation of RF input voltage is given by,


The average transit time of bunche cavity,

$$
\tau=t_{1}-t_{0}
$$

This is the time taken by the electrons to cross the bunched cavity.
The Average gap transit angle is given by,

$$
\begin{aligned}
\theta_{g} & =\omega \tau \\
& =\omega\left(t_{1}-t_{0}\right) \\
\theta_{g} & =\omega\left(t_{1}-t_{0}\right)=\omega \tau
\end{aligned}
$$

Average Buncher Cavity gap voltage during $t_{0}$ to $t_{1}$ is given by,

$$
\begin{aligned}
& \left\langle v_{s}\right\rangle=\frac{1}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}} v_{1} \sin \omega t d t^{\prime} \\
& =\frac{v_{1}}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}} \sin \omega t d t \\
& =\frac{-v_{1}}{\omega\left(t_{1}-t_{0}\right)}(\cos \omega t)_{t_{0}}^{t_{1}} \\
& =\frac{-v_{1}}{\omega\left(t_{1}-t_{0}\right)}\left(\cos \omega t_{1}-\cos \omega t_{0}\right) \\
& =\frac{v_{1}}{\omega \tau}\left(\cos \omega t_{0}-\cos \omega t_{1}\right) \\
& =\frac{v_{1}}{\omega_{\tau}}\left[\cos \omega t_{0}-\cos \omega\left(\tau+t_{0}\right)\right] \\
& =\frac{v_{1}}{\omega \tau}\left[\cos \omega t_{0}-\cos \left(\omega t_{0}+\omega \tau\right)\right] \\
& =\frac{2 v_{1}}{\omega \tau} \sin \left(\omega t_{0}+\frac{\omega \tau}{2}\right) \sin \left(\frac{\omega \tau}{2}\right) \\
& \cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \\
& =\frac{V_{1}}{\left(\frac{\omega \tau}{2}\right)} \sin \left(\frac{\omega \tau}{1^{2}}\right) \sin \left(\omega t_{0}+\frac{\tau \omega}{2}\right) \\
& =\frac{v_{1} \cdot \sin \left(\frac{\omega \psi}{2}\right)}{\left(\frac{\omega \tau}{12}\right)} \sin \left(\omega t_{0}+\frac{\omega \tau}{2}\right) \\
& =v_{1} \frac{\sin \left(\theta_{J} / 2\right)}{\left(\theta_{g} / 2\right)} \sin \left(\omega t_{0}+\theta_{g} / 2\right)
\end{aligned}
$$

$$
=v_{1} \beta_{i} \sin \left(\omega t_{0}+\left.\theta_{g}\right|_{2}\right)
$$

Here, $\beta_{i}=$ Beam Coupling Coefficient of Butcher cavitylinput cavity

$$
\begin{aligned}
& \beta_{i}=\frac{\sin \left(\theta_{g} / 2\right)}{\left(\theta_{g} / 2\right)} \\
& \left.\therefore \quad<v_{s}\right\rangle=v_{i} \cdot \beta_{i} \sin \left(\omega t_{0}+\theta_{g} / 2\right)
\end{aligned}
$$

The velocity of electrons at time ' $t_{1}^{\prime}$ is given by,

$$
\begin{aligned}
& v\left(t_{1}\right)=\sqrt{\frac{2 e}{m}\left(v_{0}+v_{1} \cdot \beta_{i} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right)} \\
&=\sqrt{\frac{2 e v_{0}}{m}}\left[1+\frac{v_{1} \beta_{i}}{v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right]^{1 / 2} \\
&=v_{0}\left[1+\frac{v_{1} \beta_{i}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right] \\
&(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots \\
& \therefore v\left(t_{1}\right)=v_{0}\left[1+\frac{v_{1} \cdot \beta_{i}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right] \quad \text { neglect all the } \quad v_{1}<v_{0},
\end{aligned}
$$

$\longrightarrow$ (Velocity modulated eq ${ }^{n}$ )
interns of $t_{1}$ is given, by,

$$
\begin{array}{r}
v\left(t_{1}\right)=v_{0}\left[1+\frac{v_{1} \cdot \beta_{i}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g}+\theta_{g} / 2\right)\right] \\
\left(\because \theta_{g}=\omega t_{1}-\omega t_{0}\right)
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow v\left(t_{1}\right)=v_{0}\left[1+\frac{v_{1} \cdot \beta_{i}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g} / 2\right)\right] \\
& \therefore v\left(t_{1}\right)=v_{0}\left[1+\frac{v_{i} \beta_{i}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g} / 2\right)\right] \rightarrow \begin{array}{c}
\left(\begin{array}{l}
\text { velocity } \\
\text { modulated } \\
\text { equation }
\end{array}\right. \\
\text { interns of }
\end{array} \\
& \text { TWO CAVITY KLYSTRON }
\end{aligned}
$$

TWO CAVITY KLYSTRON AMPLIFIER-Bunching Process
The schematic diagram of a two cavity klystron Amplifier is shown below:

fig:- Schematic diagram of a Two cavity klystron Amplifier
$\rightarrow$ As we discussed earlier, the electrons that Pass through the bunchier cavity at $v_{s}=0$ travel with unchanged velocity $v_{0}^{\prime}$ and become the bunching center.
$\rightarrow$ The electrons that Pass through the Buncher Cavity during the +ie half-cycles of RF il voltage ' $V_{s}$ ' travel faster than the electrons
than the electrons that passed the gap why $v_{S}=0$.
$\rightarrow$ The electrons that pass the Bunchier cavity during the -ve half-cycles of RF il voltage ' $V_{s}$ ', travel slower than the electrons that Passed the gap when $V_{S}=0$.
$\rightarrow$ At a distance $\Delta L$ ' from the buricher cavity, the beam electrons have drifted into"dense clusters".
$\rightarrow$ once the electrons leave the bunched cavity, the velocity of elections $\underline{v\left(t_{1}\right)}$ is given by,

$$
\begin{aligned}
& \nu\left(t_{1}\right)=v_{0}\left[1+\frac{v_{1} \cdot \beta_{i}}{v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right] \\
& \text { (or) } \\
& v\left(t_{1}\right)=v_{0}\left[1+\frac{\beta_{i} \cdot v_{1}}{v_{0}} \sin \left(\omega t_{1}-\theta_{g} / 2\right)\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
& v_{\text {max }}=v_{0}\left(1+\frac{v_{1} \beta_{i}}{v_{0}}\right) \\
& v_{\min }=v_{0}\left(1-\frac{v_{1} \beta_{i}}{v_{0}}\right)
\end{aligned}
$$

$\rightarrow$ The effect of velocity modulation Produces bunching of electron beam; (or) current modulation


$$
\begin{aligned}
& \omega=\frac{2 \pi}{T} \Rightarrow T=\frac{2 \pi}{\omega} \\
& \frac{T}{2}=\frac{\pi}{\omega} \Rightarrow \frac{T}{4}=\frac{\pi}{2 \omega} \\
& \text { Velocity }=\frac{\text { distance }}{\text { time. }} \Rightarrow d=v t
\end{aligned}
$$

For electron at time ' $t_{b}$ '

$$
\Delta \dot{L}=v_{0}\left(t_{d}-t_{b}\right) \rightarrow \text { (1) }
$$

For electron at time ' $t_{a}$

$$
\begin{align*}
\Delta L & =v_{\min }\left(t_{d}-t_{a}\right) \\
\Rightarrow \Delta L & =v_{\min }\left(t_{d}-\left(t_{b}-\frac{\pi}{2 \omega}\right)\right) \\
\Rightarrow \Delta L & =v_{\min }\left(t_{d}-t_{b}+\frac{\pi}{2 \omega}\right) \\
\Rightarrow \Delta L & =v_{0}\left(1-\frac{v_{1} \beta_{i}}{2 v_{0}}\right)\left(t_{d}-t_{b}+\frac{\pi}{2 \omega}\right) \\
\Rightarrow \Delta L & =v_{0}\left(t_{d}-t_{b}\right)-v_{0} \frac{\beta_{i} \cdot v_{1}}{2 v_{0}}\left(t_{d}-t_{b}\right)+\frac{\pi}{2 \omega} v_{0}- \\
& v_{0} \frac{\pi}{2 \omega} \cdot \frac{\beta_{i} v_{1}}{2 v_{0}} \rightarrow \text { (2) } \tag{2}
\end{align*}
$$

similarly, For electron at time ' $t_{c}$ '

$$
\begin{aligned}
\Delta L & =v_{\max }\left(t_{d}-t_{c}\right) \\
\Rightarrow \Delta L & =v_{\max }\left(t_{d}-\left(t_{b}+\frac{\pi}{2 \omega}\right)\right) \\
\Rightarrow \Delta L & =v_{0}\left(1+\frac{\beta_{i} v_{1}}{2 v_{0}}\right)\left(t_{d}-t_{b}-\frac{\pi}{2 \omega}\right) \\
\Rightarrow \Delta L & =v_{0}\left(t_{d}-t_{b}\right)+v_{0} \cdot \frac{\beta_{i}+v_{1}}{2 v_{0}}\left(t_{d}-t_{b}\right)-v_{0} \cdot \frac{\pi}{2 \omega}- \\
& v_{0} \frac{\pi}{2 \omega} \cdot \frac{\beta_{i} v_{1}}{2 v_{0}} \rightarrow \text { (3) }
\end{aligned}
$$

The necessary and sufficient condition for electrons at $t_{a}, t_{b}, t_{c}$ to meet at same
distance is,
from (2);

$$
-v_{0} \frac{\beta_{i} v_{1}}{2 v_{0}}\left(t_{d}-t_{b}\right)+\frac{\pi}{2 w} v_{0}-v_{0} \frac{\pi}{2 w} \frac{\beta_{i} v_{1}}{2 v_{0}}=0
$$

(or)
from (3);

$$
\begin{aligned}
& v_{0} \frac{\beta_{i} v_{1}}{2 v_{0}}\left(t_{d}-t_{b}\right)-v_{0} \frac{\pi}{2 \omega}-v_{0} \frac{\pi}{2 \omega} \cdot \frac{\beta_{i} v_{1}}{2 v_{0}}=0 \\
\Rightarrow & v_{6} \frac{\beta_{i} v_{1}}{2 v_{0}}=v_{0} \frac{\pi}{2 \omega}\left(1+\frac{\beta_{i} v_{1}}{2 v_{0}}\right) \\
\Rightarrow & \left(t_{d}-t_{b}\right) \frac{\beta_{i} \cdot v_{1}}{Z^{\prime} v_{0}}=\frac{\pi}{2 \omega} \quad\left(\because v_{1} \ll v_{0}\right. \text { so } \\
\Rightarrow & \left.\left(t_{d}-t_{b}\right)=\frac{\pi v_{0}}{\omega \beta_{i} v_{1}} \quad \begin{array}{l}
\text { neglect } 1+\frac{\beta_{i} v_{1}}{2 v_{0}}
\end{array}\right)
\end{aligned}
$$

substituting eqn-(4) in eq -(1) we get,

$$
\begin{aligned}
\Delta L & =v_{0}\left(t_{d}-t_{b}\right) \\
& =v_{0} \cdot \frac{\pi v_{0}}{\omega \beta_{i} v_{i}} \\
\therefore \Delta L & =v_{0} \cdot \frac{\pi v_{0}}{\omega \beta_{i} v_{i}}
\end{aligned}
$$

Here, $v_{0} \longrightarrow$ initial velocity of electrons
$v_{0} \longrightarrow$ Cathode Voltage
$\beta_{i} \rightarrow$ Beam coupling coefficient
$V_{1} \rightarrow$ Amplitude of the signal to be amplified

TWO CAVITY KLYSTRON AMPLIFIER- Current Modulation
The schematic diagram of a two cavity klystron Amplifier is shown below:

fig:- schematic diagram of. Two cavity Klystron Amplifier
The velocity of electron's passing from bunched cavity gaP is given by,

$$
\begin{aligned}
& v\left(t_{1}\right)=v_{0}\left[1+\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right] \\
& v\left(t_{1}\right)=v_{0}\left[1+\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g} / 2\right)\right]
\end{aligned}
$$

The transit time of electron to travel a distance of $L$ is given by,

$$
\begin{aligned}
& \left(t_{2}-t_{1}\right)=T=\frac{L}{v\left(t_{1}\right)}=\frac{L}{v_{0}\left[1+\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right]} \\
& \Rightarrow T=T_{0}\left[1+\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right]^{-1}
\end{aligned}
$$

Where $T_{0}=\frac{L l}{v_{0}}$ is de transit time between the cavities when no velocity modulation occurs.

$$
\begin{array}{r}
T=T_{0}\left[1-\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right] \\
(1+x)^{-1}=1-x+x^{2}-x^{3}+\cdots
\end{array}
$$

Since $v_{1} \ll v_{0}$ all the higher order terms are neglected
Multiplying with ' $w$ ' on both sides, we get

$$
\omega T=\omega T_{0}\left[1-\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right]
$$

Consider,

$$
\theta_{g}=D C \text { transit angle of bunchier cavity }
$$

$$
\theta_{0}=w T_{0}=\frac{w L}{v_{0}}=2 \pi \mathrm{~N} \text { is DC transit angle }
$$ between the two cavities and ' $N$ ' is the no.0f transit cycles between the cavities Now,

$$
\begin{aligned}
& \omega T=\theta_{0}\left[1-\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right] \\
& \Rightarrow \omega T=\theta_{0}-\frac{\beta_{i} v_{1}}{2 v_{0}} \cdot \theta_{0} \sin \left(\omega t_{0}+\theta_{g} / 2\right)
\end{aligned}
$$

Let $X=\frac{\beta_{i} v_{1}}{2 v_{0}} \theta_{0}$ is called Bunching Parameter

$$
\Rightarrow \omega T=\theta_{0}-x \sin \left(\omega t_{0}+\theta_{g} / 2\right)
$$

According to Law of conservation of charge, if a charge ' $d Q_{0}$ ' Passes the buncher Cavity gaP in time ' $d t_{0}^{\prime}$ ' then it appears at catcher cavity gap at later time $d t_{2}$.

$$
I_{0}\left|d t_{0}\right|=i_{2}\left|d t_{2}\right|
$$

$$
\left(i=\frac{d Q}{d t} \Rightarrow d Q=i d t\right)
$$

Where, $I_{0}=D c$ beam current
$i_{2}=$ current at catcher cavity,

$$
\begin{aligned}
t_{2} & =t_{0}+\tau+\tau \\
t_{2} & =t_{0}+\tau+T_{0}\left[1-\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{0}+\theta_{g} / 2\right)\right] \\
d t_{2} & =d t_{0}+T_{0}\left(-\frac{\beta_{i} v_{1}}{2 v_{0}} \cos \left(\omega t_{0}+\theta_{g} / 2\right) \omega \cdot d t_{0}\right) \\
& =d t_{0}-x \cos \left(\omega t_{0}+\theta_{g} / 2\right) d t_{0} \quad\left(\omega T_{0}=\theta_{0}\right. \\
& =d t_{0}\left(1-x \cos \left(\omega t_{0}+\theta_{g} / 2\right)\right) \quad x=\frac{\beta_{i} v_{1}}{2 v_{0}} \cdot \theta_{0}
\end{aligned}
$$

We have, $I_{0}\left|d t_{0}\right|=i_{2}\left|d t_{2}\right|$

$$
\begin{aligned}
& \Rightarrow i_{2}=\frac{I_{0}}{\left|d t_{2} / d t_{0}\right|} \\
& \Rightarrow i_{2}=\frac{I_{0}}{1-x \cos \left(\omega t_{0}+\theta_{g} / 2\right)} \\
& \Rightarrow i_{2}\left(t_{0}\right)=\frac{I_{0}}{1-x \cos \left(\omega t_{0}+\theta_{g} / 2\right)}
\end{aligned}
$$

'i" interns $0 f t_{2}$ is a given by,

$$
\begin{aligned}
t_{2} & =t_{0}+r+T_{0} \\
\omega t_{2} & =\omega t_{0}+\omega \tau+\omega T_{0} \\
& =\omega t_{0}+\theta_{9}+\theta_{0} \\
\omega t_{0} & =\omega t_{2}-\theta_{9}-\theta_{0} \\
\therefore i_{2}\left(t_{2}\right) & =\frac{I_{0}}{1-x \cos \left(\omega t_{2}-\theta_{0}-\theta_{g} / 2\right)}
\end{aligned}
$$

The current " $i_{2}$ " at. Catcher cavity is a Periodic waveform with Period, $T=\frac{2 \pi}{\omega}$ which can be expressed using trignometric fourier Series.

$$
i_{2}\left(t_{2}\right)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega t_{2}\right)+b_{n} \sin \left(n \omega t_{2}\right)
$$

$$
\left(-\pi<\omega t_{2}<\pi\right)
$$

$a_{0}, a_{n}, b_{n} \rightarrow$ trignometric fourier series constants

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} i_{2} d\left(\omega t_{2}\right) \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} i_{2} \cos \left(n \omega t_{2}\right) d\left(\omega t_{2}\right) \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} i_{2} \sin \left(n \omega t_{2}\right) d\left(\omega t_{2}\right)
\end{aligned}
$$

Substituting the values of $i_{2}$ \& the expression $I_{0}\left|d t_{0}\right|=i_{2}\left|d t_{2}\right|_{1}$ in $a_{0}, a_{n}, b_{n}$ we get,

$$
\begin{aligned}
& a_{0}=I_{0} \\
& a_{n}=2 I_{0} J_{n}(n x) \cos \left(n \theta_{g}+n \theta_{0}\right) \\
& b_{n}=2 I_{0} J_{n}(n x) \sin \left(n \theta_{g}+n \theta_{0}\right)
\end{aligned}
$$

Where $J_{n}(n x)$ is $n^{\text {th }}$ order Bessel's function of $1^{\text {st }}$ order kind.

$$
\begin{aligned}
& \text { Now, } \\
& \text { Now, } I_{0}+\sum^{\infty}\left\{2 T_{0} I_{n}(n x) \cos \left(n \theta_{1}+n \theta_{0}\right)+\cos \left(n \omega t_{2}\right)\right. \\
& i_{2}\left(t_{2}\right)=I_{0}+\sum_{n=1}^{\infty}\left\{2 I_{0} J_{n}(n x) \cos \left(n \theta_{g}+n \theta_{0}\right)+\right. \\
& \left.2 I_{0} J_{n}(n x) \sin \left(n \theta_{9}+n \theta_{0}\right)\right\} \text {. } \\
& \sin \left(n \omega t_{2}\right) \\
& =I_{0}+\sum_{n=1}^{\infty}: 2 I_{0} J_{n}(n x)\left\{\cos \left(n \omega t_{2}\right) \cos \left(n \theta_{g}+n \theta_{0}\right)+\right. \\
& \left.\sin \left(n \omega t_{2}\right) \sin \left(n \theta_{g}+n \theta_{0}\right)\right\} \\
& =I_{0}+\sum_{n=1}^{\infty} 2 I_{0} J_{n}(n x) \cos \left(n \omega t_{2}-n \theta_{g}-n \theta_{0}\right) \text {. } \\
& \cos A \cdot \cos B+\sin A \cdot \sin B=\cos (A-B) \\
& =I_{0}+\sum_{n=1}^{\infty} 2 I_{0} J_{n}(n x) \cos \left(n \omega\left(t_{2}-r-T_{0}\right)\right) \\
& \therefore i_{2}\left(t_{2}\right)=I_{0}+\sum_{n=1}^{\infty} 2 I_{0} J_{n}(n x) \cos \left(n \omega\left(t_{2}-\tau-T_{0}\right)\right)
\end{aligned}
$$

The fundamental component of current at Catcher cavity gap has amplitude,

$$
I_{2}=2 I_{0} J_{1}(x)
$$

This has maximum amplitude at $x=1.841$ Where $J_{1}(x)=0.582$
The optimum distance at which maximum amplitude of fundamental component occurs is given by,

$$
\underset{1}{x}=\frac{\beta_{i} v_{1}}{2 v_{0}} \theta_{0}=\frac{\beta_{i} V_{1}}{2 v_{0}}\left(\omega T_{0}\right)
$$

$$
\begin{gathered}
x= \\
\left(\begin{array}{c}
\text { (bunching } \\
\text { Parameter) }
\end{array}\right.
\end{gathered}
$$

$$
\Rightarrow x=\frac{\beta_{i} v_{1}}{2 v_{0}} \cdot \frac{\omega L}{v_{0}}
$$

if $x=1.841$, then

$$
L_{\text {optimum }}=\frac{3.682 v_{0} v_{0}}{\omega \beta_{i} v_{1}}
$$

TWo Cavity klystron Amplifier- out Put Power\& Voltage gain
The schematic diagram of a two-cavity Klystron Amplifier is shown below:

fig:- schematic diagram of a two -cavity Klystron Amplifier.
$\rightarrow$ The maximum bunching should occur approxmately midway between the catcher cavity grid.
$\rightarrow$ The phase of catcher cavity gap voltage must be maintained in such a way that the bunched electrons as they pass through the grids, encounter a retarding phase.
$\rightarrow$ When the bunched electron beam. Passes through retarding Phase its Kinetic energy is transferred to the field of the catcher. cavity.
$\rightarrow$ When electrons emerge from catcher grids, they have reduced velocity and finally collected by the collector.

We know that

$$
i_{2}=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega t_{2}\right)+b_{n} \sin \left(n \omega t_{2}\right)
$$

Where, $a_{0}=I_{0}$

$$
\begin{aligned}
& a_{n}=2 I_{0} J_{n}(n x) \cos \left(n \theta_{g}+n \theta_{0}\right) \\
& b_{n}=2 I_{0} J_{n}(n x) \sin \left(n \theta_{0}+n \theta_{0}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
& i_{2}=I_{0}+\sum_{n=1}^{\infty} 2 I_{0} J_{n}(n x) \cos \left(n \omega\left(t_{2}^{1}-\tau-T_{0}\right)\right) \\
& i_{2}=\left(I_{0}+2 I_{0} J_{1}(x) \cos \left(\omega\left(t_{2}-\tau-T_{0}\right)\right)+2 I_{0} J_{2}(x)\right. \\
& \cos \left(2 \omega\left(t_{2}-\tau-T_{0}\right)\right)+\cdots \\
& \text { Dc value } 2^{\text {aud }} \text { harmonics } \\
& \text { of client }
\end{aligned}
$$

The fundamental component of induced current at catcher cavity grids is given by

$$
i_{2 \text { (inducal })}=\beta_{0} 2 I_{0} J_{1}(x) \cos \left(\omega\left(t_{2}-\tau^{i}-T_{0}\right)\right)
$$

Where, $\beta_{0} \rightarrow$ Beam coupling coefficient of output cavity
The amplitude of induced current into the catcher cavity gap.

$$
I_{2}(\text { induced })=\beta_{0} \cdot 2 I_{0} J_{1}(x)=\beta_{0} I_{2}
$$

The equivalent circuit of catcher cavity is given by,

Here, $R_{\text {sho }} \rightarrow$ Resistance of catcher cavity walls
$R_{B} \rightarrow$ Beam Loading resistance
$R_{L} \rightarrow$ external Load resistance
$R_{\text {sh }} \rightarrow$ effective shunt resistance, outPut Power, $P_{\text {out }}=\frac{\left(\beta_{0} I_{2}\right)^{2}}{2} \times R_{\text {sh }}$

$$
\begin{aligned}
& =\frac{\left(\beta_{0} I_{2}\right)\left(\beta_{0} \cdot I_{2} \cdot R_{s h}\right)}{2} \\
& =\frac{\beta_{0} I_{2} V_{2}}{2}
\end{aligned}
$$

input Power $\quad P_{i n}=V_{0} I_{0}$

$$
\text { efficiency, } \eta=\frac{P_{\text {out }}}{P_{i n}}=\frac{\beta_{0} I_{2} V_{2}}{2 V_{0} I_{0}}
$$

For a Practical Two cavity klystron Amplifier, $\eta$ is about 15 to $30 \%$

Mutual conductance of two cavity klystron Amplifier ( $g_{m}$ ) :-

$$
\begin{aligned}
& \left|G_{m}\right|=\frac{I_{2 \text { (induced) }}}{V_{1}} \\
& \left|G_{m}\right|=\frac{\beta_{0} I_{2}}{V_{1}}=\frac{\beta_{0} \cdot 2 I_{0} J_{1}(x)}{V_{1}} \rightarrow(1)
\end{aligned}
$$

Bunching Parameter, $x=\frac{\beta_{i} v_{1}}{2 v_{0}} \theta_{0}$

$$
\begin{equation*}
\Rightarrow V_{1}=\frac{x 2 V_{0}}{\beta_{i} \theta_{0}} \tag{2}
\end{equation*}
$$

from (1) and (2);

$$
\begin{aligned}
& \left|G_{m}\right|=\frac{\beta_{0} \cdot 2 I_{0} J_{1}(x)}{2 V_{0} \cdot x} \beta_{i} \theta_{0} \\
& \frac{\left|G_{m}\right|}{G_{0}}=\beta_{0}^{2} \frac{J_{1}(x)}{x} \theta_{0}
\end{aligned}
$$

Where, $G_{0}=\frac{I_{0}}{V_{0}}$ is DC beam conductance
Voltage gain of Two-Cavity Klystron Amplifier:-

$$
A_{v}=\frac{V_{2}}{v_{1}}=\frac{\beta_{0} I_{2} R_{s h}}{V_{1}}=\frac{\beta_{0} \cdot 2 I_{0} J_{1}(x)}{v_{1}} \cdot R_{s h}
$$

$\Rightarrow A_{V}=\frac{\beta_{0}^{2} \theta_{0}}{R_{0}} \cdot \frac{J_{1}(x)}{x} R_{\text {sh }}$
Where, $R_{0_{i}}=\frac{V_{0}}{I_{0}}$ tees Dc beam resistance.

Applications of two -cavity klystron Amplifier
The two-cavity klystron finds application, in satellite communication
© UHF TV transmitters

- Radar systems
-1. Wideband high power corimurication
- Troposphere scatter transmitters, etc...

Reflex Klystron :-
A Reflex klystron is a specialized Low Power vacuum tube used to Produce oscillations at microwave frequency. Klystrons are basically specialized tubes used as Amplifiers and oscillators at microwave frewency range.
Need of Reflex Klystron:-
$\rightarrow$ We have already discussed Two-cavity Klystron in. Previous concepts. We know that a two-cavity klystron acts as an amplifier to Provide Amplification of RF signals. so, can that same structure be used for generating oscillations???
'Basically a two -cavity klystron can be converted into an oscillator, but some disadvantages are associated With it.
$H$ As We know to design an oscillator, Positive feedback must be Provided to the input in a Way to have a magnitude of loop gain as unity.
$\rightarrow$ So, if we design, a klystron oscillator using two -cavity klystron, then to have a change in oscillating frequency, the resonant frequency, of the two-cavitics is also required to be, changed. Thereby leading to cause difficulty in generating oscillations.
$\rightarrow$ Thus to overcome the disadvantage, :a reflex klystron having a single cavity was invented to have sustained oscillations at microwave frequency.
Construction/ structure of Reflex klystron:The basic schematic OF a reflex klystron is shown below:
$\rightarrow$ The structure consists of a cathode and focusing anode that combinely acts as an election gun for the tob The cathode emits the electronbea, Which is focussed inside the tube by the focusing anode.
$\rightarrow$ Also, a Positive potential is Provided as input Which sets up an electric field inside the cavity.
$\rightarrow$ As it is a single cavity structure thus single cavity act as buncher ad catcher cavity separately. At the time of foriuard movement of the electron beam, it acts as a buncher cavity. While at the time of backward L) movement, it is a catcher cavity.
$\rightarrow$ A repeller plate that causes backward movement of the electron beam is Present at the end of the electron gun. The potential at the reeler is made extremely negative inorder to Permit repulsion of like charges.
$\rightarrow$ Repulsion is necessary inorder to build electrical oscillations, as ole power must be fed to the input. so, the velocity modulated electrons must have to travel a backward Path inorder to provide feedback. Thus, repeller is used in the
sturucture of Klystron.
Operating Principle:-
$\rightarrow$ Like two-cavity klystron, a reflex Klystron utilizes the phenomenon of "velocity and Current modulation" to produce oscillations
$\rightarrow$ However, there exists variation in constructional structure and the respective applications of both.
$\rightarrow$ A reflex klystron consists of a single Cavity that performs the action of. both buncher \& catcherity. As to have oscillations, feedback is needed to be applied at the input which is Provided by the oscillator.
$\rightarrow$ While moving, electrons undergo velocity modulation and the repelled applies repulsive forces on them. This leads to the formation of a bunch of electron Further, this bunching will lead to cause, current modulation.
Working of Reflex klystron:-
As we have already discussed the fundmental principle of operation of a reflex Klystron is velocity and current modulation.
So, conside the above figure:

* Initially When the electron beam is emitted by the electron gun then the "early electrons" (eek) experience, a very high Potential. Due to this, a strong
electric field gets generated inside the Cavity gap, leading to cause movement of elections towards the repelled with a very high velocity.
* Due to high velocity the electrons Pence. trate deeper into the region of the repelled and thus require greater time to repel back towards the catcher cavity.
* But When the externally applied Potential is almost 0 , then electron moves with a uniform velocity with which it was emitted by the gun. These dections are generally known as "reference electrons" ( $e_{r}$ ).
* so, in this case er will not Perictrate into the repelled surface and gets repelled by the reveller in lesser time than the early electron.
* Further, the electron that is emitted by the gun after reference electron experiences highly negative Potential at the cavity:
* This electron is generally known as "Late: electron" (el) and moves "with a very low velocity inside the tube. The Penetration level of the late electron

1 into the impeller space is least thus takes a minimal amount of time to get repelled back.

* It is to be noted that due to deep Penetration in the repelled region $e_{e}$ Will take more timerthan er while returning towards thell catcher.
* This Change in velocity of moving $e^{-}$. is known as "velocity modulation", all the electrons get bunched while returning towards the catcher cavity:
* So, in this way bunch of electrons reaches the catcher cavity. This bunching of electrons leads to cause "current modulation inside the tube. Therefore, at the time of returning, the bunched electrons transfer the maximal of their energy to the catcher cavity.
* Thereby, leading to cause "oscillations" inside the tube.
Applegate diagram of Reflex klystron:-
$\rightarrow$ The early election "ec that passe's through the $g a p$ before the reference electron $c_{r}$ experiences a maximum positive voltage across the gap and this electron is accelerated. It moves with greater velocity and. Penetrate decip into repella. space. The return time for electron $e_{e}$ is greater as the depth of Penetration into the repelled space is more
$\rightarrow$ The reference electron 'ers that passes through the gap when the gap voltage is zero and gets unaffected by the gap voltage. This moves, towards the repelled and gets reflected by.. the -ie voltage on the repellerio
$\rightarrow$ The late' electron "el' that Passed's through the gap later than, reference electron $e_{r}^{\prime}$ experiences all maximum $-v e$ voltage and moves with a, retarding velocity. The return time is shorter as the Penetration into repelled space is less and catches up with ' $e_{r}$ ' \& e electrons forming bunch centred around reference electrons.
$\rightarrow$ In order for the electron beam to generate maximum amount of energy to the oscillation, the returning $e^{-}$beam must cross the cavity gap when the gap field is maximum retarding. In this way a maximum amount of kinetic energy

Can be transferred from returned electrons to the cavity Wallis.
$\rightarrow$ Bunch occurs once: Per cycle, centred around reference election $E_{r}$.
$\rightarrow$ The optimum transit times should be $T=n+3 / 4$ Where $n=0,1,2,3$.
$\rightarrow 1(3 / 4)$ is the dominant mode because it has high efficiency.
$\rightarrow$ It is a Low power generator of $10-500 \mathrm{mu}$ output at a frequency range of 1 to 25 GHz The efficient is about 20 to $30 \%$.
** Reflex Klystron - Velocity modulation \& bunching Parameter derivation The schematic diagram of a Reflex klystron is shown below:

fig- Peeler klystron

The operation of klystron Amplifier is similar to two-cavity Klystron Amplif. We know that,

The DC beam. electron velocity is given by,

$$
v_{0}=\sqrt{\frac{2 c v_{0}}{m}}=0.593 \times 10^{6} \sqrt{v_{0}}
$$

The expression for velocity modulation $c$ is given by,

$$
V\left(t_{1}\right)=v_{0}\left[1+\frac{\beta_{i 0} v_{1}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g} / 2\right)\right]
$$

The Retarding electric field is given by,

$$
\begin{aligned}
& E=\frac{v_{0}+v_{r}+v_{1} \sin \omega t}{L} \\
& \because\left(v_{0}+v_{r}\right) \gg v_{1} \sin \omega t, \quad E=\frac{v_{0}+v_{r}}{L}
\end{aligned}
$$

The force experienced by election due to Retarding electric field is given by,

$$
\begin{aligned}
& F=-e E \\
\Rightarrow & m a=-e\left(\frac{v_{0}+v_{r}}{L}\right) \\
\Rightarrow & m\left(\frac{d^{2} z}{d t^{r}}\right)=-e\left(\frac{v_{0}+v_{r}}{L}\right) \\
\Rightarrow & \frac{d^{2} z}{d t^{2}}=-\frac{e}{m}\left(\frac{v_{0}+v_{r}}{L}\right) \\
\Rightarrow & \frac{d z}{d t}=-\frac{e\left(v_{0}+v_{r}\right)}{m L} \int_{t_{1}}^{t} d t \\
\Rightarrow & \frac{d z}{d t}=\frac{-e\left(v_{0}+v_{r}\right)}{m L}\left(t-t_{1}\right)+k_{1}
\end{aligned}
$$

$$
\Rightarrow \frac{d z}{d t}=\frac{-c\left(v_{0}+v_{r}\right)}{m L}\left(t-t_{1}\right)+k_{1}
$$

At $t=t_{1}$;

$$
\begin{aligned}
& \frac{d z}{d t}=v\left(t_{1}\right) ; v\left(t_{1}\right)=k_{1} \\
& \therefore \frac{d z}{d t}=\frac{-c\left(v_{0}+v_{r}\right)}{m L}\left(t-t_{1}\right)+v\left(t_{1}\right)
\end{aligned}
$$

Again integrating on both sides wreto 't' we get,

$$
\begin{aligned}
& z=\frac{-c\left(v_{0}+v_{r}\right)}{m L} \int_{t_{1}}^{t}\left(t-t_{1}\right) d t+v\left(t_{1}\right) \int_{t_{1}}^{t} d t \\
\Rightarrow \quad & z=\frac{-c\left(v_{0}+v_{r}\right)}{2 m L}\left(t-t_{1}\right)^{2}+v\left(t_{1}\right)\left(t-t_{1}\right)+k_{2}
\end{aligned}
$$

At $t=t_{1} ; \quad k_{2}=d$

$$
\therefore z=\frac{-c\left(v_{0}+v_{r}\right)}{2 m L}\left(t-t_{1}\right)^{2}+v\left(t_{1}\right)\left(t-t_{1}\right)+d
$$

At $t=t_{2}$;

$$
\begin{aligned}
& \phi=\frac{-c\left(v_{0}+v_{r}\right)}{2 m L}\left(t_{2}-t_{1}\right)^{2}+v\left(t_{1}\right)\left(t_{2}-t_{1}\right)+d \\
\Rightarrow & \frac{e\left(v_{0}+v_{r}\right)}{2 m L}\left(t_{2}-t_{1}\right)^{\gamma}=\left(t_{2}-t_{1}\right) v\left(t_{1}\right) \\
\Rightarrow & t_{2}-t_{1}=\frac{2 m L}{c\left(v_{0}+v_{r}\right)} v\left(t_{1}\right)
\end{aligned}
$$

Here, $\left(t_{2}-t_{1}\right) \rightarrow$ Roundxtransit time

$$
\begin{aligned}
& T=\left(t_{2}-t_{1}\right)=\frac{2 m L}{e\left(v_{0}+v_{r}\right)} v_{0}\left[\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g / 2}\right)\right] \\
& T_{0}^{\prime}=\frac{2 m L v_{0}}{e\left(v_{0}+v_{r}\right)} \rightarrow(D c \text { round trip time) } \\
& T=T_{0}^{\prime}\left[1+\frac{\beta_{i} v_{1}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g} / 2\right)\right] \\
& \dot{\omega} T=\omega T_{0}^{\prime}\left[1+\frac{\beta_{0} v_{1}}{2 v_{0}} \sin \left(\omega t_{1}-\theta_{g} / 2\right)\right]
\end{aligned}
$$

Let, $\theta_{0}^{\prime}=\omega T_{0}^{\prime} \rightarrow$ (Dc round trip transit angle)
Bunching Parameter,

$$
x^{\prime}=\frac{\beta_{1} v_{1}}{2 v_{0}} \theta_{0}^{\prime}
$$

$$
\therefore \begin{aligned}
\omega T & =\omega\left(t_{2}-t_{1}\right) \\
& =\theta_{0}^{\prime}+x^{\prime} \sin \left(\omega t_{1}-\theta_{g} / 2\right)
\end{aligned}
$$

** Reflex Klystron - output Power\&efficiency

The condition for maximum energy transfer to the cavity walls by electron bunch, the round trip transit angle of centre of bunch should be,

$$
\theta_{0}^{\prime}=\omega T_{0}^{\prime}=2 \pi N=2 \pi(n-1 / 4)
$$

Here, $n=$ any integer representing cycle number
$N=(-1 / 4)$ is the mode number

$$
n=1 ; N=\frac{3}{4} \operatorname{mode}, n=2 \Rightarrow N=1 \frac{3}{4} \operatorname{mode}
$$

(dominant mode for which maximum efficiency occurs)
The beam current at cavity gap is a Periodic Waveform and is given by,

$$
i_{2}=\Theta \sum_{n=1}^{\infty} 2 I_{0} J_{n}\left(n x^{\prime}\right) \cos \left[n\left(\omega t_{2}-\theta_{0}^{\prime}-\theta_{g}\right)\right]
$$

(indicating the direction of current is in -re $z$-directions
By expanding the above expression we get,

$$
\begin{array}{r}
i_{2}=-I_{0}-2 I_{0} J_{1}\left(x^{\prime}\right) \cos \left[\omega t_{2}-\theta_{0}^{\prime}-\theta_{g}\right]-2 I_{0} J_{2}\left(2 x^{\prime}\right) \\
\\
\cos \left[2\left(\omega t_{2}-\theta_{0}^{\prime}-\theta_{g}\right)\right] \cdots
\end{array}
$$

The fundamental component of current induced into the cavity is given by

$$
P_{2}(\text { ind })=-\beta_{i} 2 I_{0} J_{1}\left(x^{\prime}\right) \cos \left(\omega t_{2}-\theta_{0}^{\prime}-\theta_{g}\right)
$$

The magnitude of current induced into the cavity is given by,

$$
I_{2}(\text { ind })=\beta_{i} \cdot 2 I_{0} J_{1}\left(x^{\prime}\right)
$$

Where, $\beta_{i} \rightarrow$ Beam coupling, coefficient
Dc. Power in given by:

$$
P_{d c}=v_{0} I_{0}
$$

Ac Power obtained from the cavity is given by,

$$
\begin{aligned}
P_{a c} & =\frac{V_{1}}{\sqrt{2}} \times \frac{I_{2}(\text { indus) }}{\sqrt{2}} \\
& =\frac{V_{1} I_{2} \text { (indus) }}{2} \\
& =\frac{V_{1} \beta_{i} \not \not I_{0} J_{1}\left(x^{\prime}\right)}{\nVdash} \\
& =\beta_{i} V_{1} I_{0} J_{1}\left(x^{\prime}\right)
\end{aligned}
$$

$$
\text { efficiency, } \eta=\frac{P_{a c}}{P_{d c}}=\frac{\beta_{i} v_{1} I_{0} J_{1}\left(x^{\prime}\right)}{v_{0} I_{0}}
$$

From bunching Parameter,

$$
\begin{aligned}
x^{\prime} & =\frac{\beta_{i} v_{1}}{2 v_{0}} \theta_{0}^{\prime} \\
\Rightarrow v_{i} & =\frac{x^{\prime} 2 v_{0}}{\beta_{i}, \theta_{0}^{\prime}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\eta & =\frac{\beta_{1}^{\prime} \cdot x^{\prime} 2 y_{0} J_{1}\left(x^{\prime}\right)}{y_{0} \beta_{1}^{\prime} \theta_{0}^{\prime}} \\
& =\frac{2 x^{\prime} J_{1}\left(x^{\prime}\right)}{\theta_{0}^{\prime}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\Rightarrow \eta=\frac{2 x^{\prime} J_{1}\left(x^{\prime}\right)}{(2 \pi n-\pi / 2)} \quad\left(\because \theta_{0}^{\prime}=2 \pi(n-\pi / 4)\right) \\
\\
=2 \pi n-\pi / 2
\end{array}\right)
$$

for dominant mode i.e, for $n=2$ (or) $N=1 \frac{3}{4}$.

$$
\begin{aligned}
x^{\prime} J_{1}^{\prime \prime}\left(x^{\prime}\right)=2.45 ; & x^{\prime}=2.408 \\
& J_{1}\left(x^{\prime}\right)=0.52
\end{aligned}
$$

$$
\begin{aligned}
\eta_{\text {max }} & =\frac{2(2.408)(0.52)}{2 \pi(2)-\pi / 2} \\
& =22.7 \%
\end{aligned}
$$

Dc round trip transit time is given by,

$$
\begin{aligned}
& T_{0}^{\prime}=\frac{2 m L}{e\left(v_{0}+v_{\gamma}\right)} v_{0} \\
\Rightarrow & \omega T_{0}^{\prime}=\frac{2 m \omega L}{e\left(v_{0}+v_{r}\right)} \cdot v_{0} \\
\Rightarrow & \omega T_{0}^{\prime}=\frac{2 m \omega L}{e\left(v_{0}+v_{r}\right)} \cdot \sqrt{\frac{2 e v_{0}}{m}} \quad\left(\because v_{0}=\sqrt{\frac{2 e v_{0}}{m}}\right) \\
\Rightarrow & (2 \pi n-\pi / 2)=\frac{2 m \omega L}{e\left(v_{0}+v_{r}\right)} \sqrt{\frac{2 e v_{0}}{m}} \\
\Rightarrow & (2 \pi n-\pi / 2)^{2}=\frac{4 m^{r} \omega^{2} L^{2}}{e^{\gamma}\left(v_{0}+v_{r}\right)^{2}} \cdot \frac{2 \not C_{0} v_{0}}{2 / r} \\
\Rightarrow & \frac{v_{0}}{\left(v_{0}+v_{r}\right)^{2}}=\frac{(2 \pi n-\pi / 2)^{2}}{8 \omega^{2} L^{2}} \cdot \frac{e}{m}
\end{aligned}
$$

Where, $V_{0} \rightarrow$ cathode voltage; $V_{r} \rightarrow$ reseller voltage $\mathrm{e} / \mathrm{m}=1.759 \times 10^{11} \mathrm{c} / \mathrm{kg}^{\prime \prime}$

* Reflex Klystron - Electronic Admittance

The schematic diagram of Reflex klysto, is same as shown in earlier.

The induced current at the cavity in Phasor form is given by,

$$
i_{2}(\text { indus })=\beta_{i} 2 I_{0} J_{1}\left(x^{\prime}\right) e^{-j \theta_{0}^{1}}
$$

The voltage gap across gap at time ' $t 2$ ' in Phasor form is given by,

$$
V_{2}=V_{1} e^{-j \pi / 2}
$$

The electronic admittance of Reflex klystron is given by,

$$
\begin{aligned}
Y_{e} & =\frac{i_{2(i n d u)}}{V_{2}} \\
& =\frac{2 \beta_{i} I_{0} J_{1}\left(x^{\prime}\right) e^{-j \theta_{0}^{\prime}}}{V_{1} e^{-j \pi / 2}} \\
& =\frac{2 \beta_{i} I_{0} J_{1}\left(x^{\prime}\right) e^{j\left(\pi / 2-\theta_{0}^{\prime}\right)}}{V_{1}}
\end{aligned}
$$

Bunching Parameter of Reflex klystron is given by,

$$
\begin{align*}
x^{\prime} & =\frac{\beta_{i} v_{1}}{2 v_{0}} \theta_{0}^{\prime} \\
\Rightarrow v_{1} & =\frac{2 v_{0} x^{\prime}}{\beta_{i} \theta_{0}^{\prime}} \tag{2}
\end{align*}
$$

Substituting $e q^{n}$-(2) in eq -(1) we get

$$
\begin{align*}
& Y_{e}^{\prime}=\frac{2 \beta_{i} I_{0} J_{1}\left(x^{\prime}\right)}{2 V_{0} x^{\prime}} \beta_{i} \theta_{0}^{\prime} e^{j\left(\pi / 2-\theta_{0}^{\prime}\right)} \\
& Y_{e}=\frac{I_{0}}{v_{0}} \frac{\beta_{i}^{2} \theta_{0}^{\prime}}{2} \frac{2 J_{1}\left(x^{\prime}\right)}{x^{\prime}} e^{j\left(\pi / 2-\theta_{0}^{\prime}\right)} \rightarrow \text { Dc beam } \\
& \text { conductance }
\end{align*}
$$

(exponential form)
Remember, Admittance $=$ conductance + susecptance

$$
\left(G_{c}+j B_{e}\right)
$$

Here, $\quad \theta_{0}^{\prime}=D c$ round trip transit angle

$$
\begin{aligned}
& =(n-1 / 4) 2 \pi \\
& =2 \pi N
\end{aligned}
$$

Where, ' $n$ ' is any integer
' $N$ ' represents mode
We know that, the dominant mode of Reflex Klystron is $1 \frac{3}{4}$ all this has high efficiency. The equivalent circuit of Reflex klystron is given by,

L\&c are energy storage elements
$G_{e} \rightarrow$ copper/conductance losses inside the 1. Cavity
$G_{B} \rightarrow$ Beam Loading conductance:
$G_{L} \rightarrow$ Load conductance
The total conductance, $G=G_{e}+G_{B}+G_{L}$,

$$
=\frac{1}{R_{s h}}
$$

Where, $R_{\text {shh }} \rightarrow$ effective shunt resistance

Note:- The magnitude of -eve real Part of Admittance must not be less than the total conductance to maintain osci llations in the cavity.

$$
\text { i.e. } \quad\left|-G_{c}\right| \geqslant G_{7}
$$

If you plot the exponential form of Admittance in a rectangular form plot, a "spiral structure" is formed.


To the values of $\theta_{0}^{\prime}$, lying to the left of the dotted line drawn, the oscillation Will occur. This Point should be focussed While considering the electronic Admittance of a. Reflex klystron.

Performance Characteristics of Reflex klystron
(1) Voltage characteristics:-
$\qquad$ $\therefore$ Cathode combinations of $\left(v_{0}, v_{r}, v_{1}\right)$.

$$
T_{\text {optimum }}=(n+3 / 4) T
$$

(2) outPut Power \& frequency characteristics:-


Maximum Power is obtained at $N=13 / 4$. Depending on the values of $V_{r}$, Outpout Power and frequency varies.

Electronic \& mechanical tuning in Reflex Klystron:-
electronic tuning:-
Variation of: frequency by the method of adjusting repelled voltage is called electronic tuning.
mechanical tuning :-
Variation in frequency of resonance of cavity by varying its dimension by a mechanical method like, adjusting screws is called mechanical toning.
Applications of reflex klystron:-
As reflex klystrons are oscillators, thus find applications in.

* Local oscillators receivers
* radar receivers
* radio receivers
* Utilized as signal sources in microwave generators and Pump oscillators of Parametric amplifiers.

- Waveguide Microwave functions:-
consider a Waveguide having 4 Ports. If the Power is applied to one Port, it goes through all the 3 Ports in some Proportions where some it might reflect back from the i same port. This concept is clearly depicted in the following figure.

Port 2
$\square$
Port 1


Scattering Parameters:-
For a two-port network, as shown in the following figure, if the Power is applied at one Port, as we just discussed, most of the Power escapes from the other Port, While some of it reflects back to the same Port. In the following figure, if $v_{1}$ or $v_{2}$ is applied, then $I_{1}$ or $I_{2}$ current flows respectively.

If the source is applied to the opposite port, another two combinations are to be considered: so, for a two-port network, $2 \times 2=4$ combinations are likely to occur. The travelling waves with associated Powers when scatter out through the Ports, the 4 Microwave junction can be defined by s-parafee con scattering parameters, Which are represented
in a matrix form, called as scattering Matrix".

Scattering Matrix:-
It is a square matrix which gives all the combinations of Power relationships betwea the various input and output ports of a Microwave junction. The elements of this matrix are called. "Scattering coefficients' (or) "scattering $s$ parameters". consider the following figure.


Here, the source is connected through thine While $a_{1}$ is the indecent wave and $b_{1}$ is the reflected wave.
If a relation between $b_{1}$ ard $a_{1}$ is given, it would be as follows:
$b_{1}=(r e f l e c t i o n ~ c o c f f i c i e n t) ~ a_{1}=s_{1 i} a_{1}$
Where,
$S_{1 i} \rightarrow$ Reflection coefficient of $1^{\text {st }}$ line
$1 \rightarrow \operatorname{Reflection}$ from $1^{\text {st }}$ line
$i \rightarrow$ source connected at $i^{\text {th }}$ line
If the impedance matches, then the Power gets transferred to the load. Unlikely if the load impedance doesn't match with the characteristic impedance then the reflection coefficient occurs. That means, Reflection coefficient occurs if

$$
z_{L} \neq z_{0}
$$

However, if this mismatch is there for more than one Port example ' $n$ ' Ports, then $i=1$ to $n$.
Therefore, we have

$$
\begin{aligned}
& b_{1}=s_{11} a_{1}+s_{12} a_{2}+s_{13} a_{3}+\cdots+s_{1 n} a_{n} \\
& b_{2}=s_{21} a_{1}+s_{22} a_{2}+s_{23} a_{3}+\cdots+s_{2 n} a_{n}
\end{aligned}
$$

$$
b_{n}=s_{n 1} a_{1}+s_{n_{2}} a_{2}+s_{n 3} a_{3}+\cdots+s_{n n} a_{n}
$$

When this whole thing is kept in a matron form,

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
s_{11} & s_{12} & s_{13} & \cdots & s_{1 n} \\
s_{21} & s_{22} & s_{23} & \cdots & s_{2 n} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
s_{n 1} & s_{n 2} & s_{n 3} & \cdots & s_{n n}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Here, the column matrix $[b]$, corresponds to the reflected wave or the output, while the matrix [a] corresponds to the incident Waves (or) the input. The scattering column matrix [s] which is of the order of $n \times n$ Contains the reflection coefficients and transmission coefficients. Therefore,

$$
[b]=[s][a]
$$

Properties of [ $s$ ] matrix:-
The scattering matrix is indicated as [s] matrix. There are few standard properties for [s] matrix. They are-

1. [s] is always a square matrix of order $n \times n$.

$$
\text { i.c., }[s]_{n \times n}
$$

2. [ $s$ ] is a symmetric matrix

$$
\text { i.e., } \quad s_{i j}=s_{j i}
$$

3. $[s]$ is a unitary matrix.

$$
\text { i.e., }[s][s]^{*}=[1]
$$

4. The sum of the Products of foch term of any row (on column multiplied by the complex, conjugate of the corresponding terms of any other row on column is zero. ie.,

$$
\sum_{i=j}^{n} s_{i k} s_{i k}^{*}=0 \text { for } k \neq j
$$

$K=(1,2,3, \ldots n)$ and $j=(1,2,3, \ldots, n)$
5. If the electrical distance between some $k^{\text {th}}$ port and the junction is $\beta_{K} I_{k}$, then the coefficients of $s_{i j}$ involving $K$, will be multiplied by the factor $e^{-j \beta k I_{k}}$.
Here, $I \longrightarrow$ applied energy
$\beta \rightarrow$ Phase constant
Waveguide Junction:-
$\rightarrow$ Waveguide junctions are used to enable Power in a waveguide to be split, combined (or) for some extracted,
$\rightarrow$ There are a number of different types of Waveguide junction that can be used, each type having different properties - the different types of Waveguide junction affect the energy contained within the Waveguide in different ways.
$\rightarrow$ The common types of Waveguide junction include the "E-tyPe", H-type" Magic type" and Hybrid Ring junctions:
$\rightarrow$ The different forms of Waveguide junction have different Properties and this means that they are applicable for different applications. Having an understanding of their different properties enables the correct type to be chosen.
Waveguide junction types:-
The main types of Waveguide junction are listed below:
E-type T-junction:- The E-type Waveguide junction gains its name because the top of the " $T$ " extends from the main Waveguide in the same

Plane as the electric field in the waveguide
H-type T-junction:- The H -type waveguide junction gains its name because top of the " $T$ " in the $T$-junction is Parallel to the plane of the magnetic field, $H$ lines in the Waveguide.
Magic T-junction:- The magic T-junction is effectively a combination of the E-type and $H$-type Waveguide junctions.
Hybrid Ring Waveguide junction:- This is another form of Waveguide junction that is more complicated than either the basic E-type (or) H -type Waveguide junction. It is Widely used within radar system, as a form of duplexer.
${ }^{*}$ * E-plane $T$ junction:-
$\rightarrow$ It is mostly considered when we are transmitting electric field through a Waveguide:
$\rightarrow$ This type of Waveguide junction is formed by attaching a, single waveguide to the broader dimension of a Rectangular waveguide.
$\rightarrow$ It is called an E-type T junction because the junction arm iq, the top of the "T"." 'extends from the main waveguide in the same direction as the E-field. :
$\rightarrow$ It is characterized by the, fact that the Outputs from out tits form form with eachother. waveguide

Construction:-
The basic construction of the Waveguide junction shows the three Port Waveguide device.
$\rightarrow$ Although it may be assumed that the input is the single port and the two outputs are those on the top section of the " $T$ ", actually any port can be used as the input, the other two being outputs.
$\rightarrow$ Each port is considered as one arm. Intotal, there are 3 arms.
$\rightarrow$ The two Ports (Port 1\&Port 2) are on the same straight line and hence they are considered to be "collinear ports". Mostly. Collinear Ports are Used as old Ports.
$\rightarrow$ The Port left alone, is considered to be isP Port.
*) Port 3
side.

Port 1

OPeration:-
$\rightarrow$ To see how the Waveguide junction: operates, and how the $180^{\circ}$ phase shift occurs, it is necessary to look at the drawn electric field. The manes field is omitted from the diagram for simplicity
$\square$


Port-1 Port -2
fig:-E-type junction fie ls
$\rightarrow$ It can be seen from the electric field that When it approaches the T-junction itself, the electric field lines becomes distorted and bend.
$\rightarrow$ They split so that the "Positive" end of the line remains with the top side of the right hand section in the diagram, but the "negative" end of the field lines remain with the top side of the left hand section.
$\rightarrow$ In this way, the signals appearing at either section of the " $T$ " are out of phase. These phase relationships are preserved, if signals enter from either of the other Ports.
$\rightarrow$ When input is given to Port 3 , the microwave signal will be coming out from the two output Ports i.e. Port 1 and Port z.
$\rightarrow$ Whenever an electric field is coming from E-Plane Tee junction, that is from E-arm (or) Side arm (or) Port 3 it will be coming out from the two of p Ports' (Port 1 \& Port 2) but with $180^{\circ}$ Phase shift.
$\rightarrow$ It. Can be shown more clearly through a graph as shown below:

fig:-E-plane $180^{\circ}$ phase shift
$\rightarrow$ The side arm is Parallel to the electric field lines. So, that E-Plane Tee junction is also known as "Voltage-Series junction":
S-Matrix Calculations-(E-Plane Tee)

$\rightarrow$ A rectangular slot is cut along the broader dimension of a long waveguide and a side arm is attached.
$\rightarrow$ Ports $1 \& 2$ are the collinear Ports and Port 3 is the $\in$-arm.
$\rightarrow$ when wave is made to propagate into Ports, the two outputs. Port 1 \& Port z will have a Phase shift of $180^{\circ}$.
$\rightarrow$ The scattering matrix of E-Plane Tee can be used to describe its. Ports.
(i) $[5]$ is a $3 \times 3$ matrix, since there are 3 Ports.

$$
[s]=\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right]
$$

(ii) Scattering coefficients $\quad S_{23}=-s_{13}$ ( $180^{\circ}$ Phase shift) Since outPuts at Port 1 and Port are out of Phase by $180^{\circ}$ with an input at Port 3 .
(iii) If Port 3 is Perfectly matched to the junction and there are no reflections at Port 3 , then

$$
s_{33}=0
$$

(iv) From the symmetric Property, $S_{i j}=s_{j i}$

$$
\begin{aligned}
\therefore s_{12} & =s_{21} \\
s_{13} & =s_{31} \\
s_{23} & =s_{32}=-s_{13}
\end{aligned}
$$

Now,

$$
[s]=\left[\begin{array}{ccc}
s_{11} & s_{12} & s_{13} \\
s_{12} & s_{22} & -s_{13} \\
s_{13} & -s_{13} & 0
\end{array}\right]
$$

(v) From the unitary Property, we have

$$
\begin{aligned}
& {[S] } \\
& {\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]\left[\begin{array}{lll}
S_{11} & S_{12} & s_{13} \\
s_{22}^{\prime} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right]^{*} }
\end{aligned}
$$

$$
R_{1}\left[\begin{array}{ccc}
S_{11} & S_{12} & S_{13} \\
R_{3} & S_{12} & S_{22}
\end{array}-\frac{s_{13}}{S_{13}}--s_{13} \quad 0 .\left[\begin{array}{ccc}
S_{11}^{*} & s_{12}^{*} & s_{13}^{*} \\
S_{12}^{*} & S_{22}^{*} & s_{13}^{*} \\
S_{13}^{*} & -s_{13}^{*} & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
$$

$\underline{\underline{R_{1}} c_{1}}:-s_{11} \cdot s_{11}^{*}+s_{12} \cdot s_{12}^{*}+s_{13} \cdot s_{13}^{*}=1$

$$
\Rightarrow\left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}=1
$$

$$
R_{2} C_{2}:-\quad S_{12} \cdot S_{12}^{*}+S_{22} \cdot S_{22}^{*}+\left(-s_{13}\right)\left(-s_{13}\right)^{*}=1
$$

$$
\Rightarrow\left|s_{12}\right|^{2}+\left|s_{22}\right|^{2}+\left|s_{13}\right|^{2}=1
$$

$R_{3} C_{3}$ :-

$$
\begin{aligned}
& \quad s_{13} \cdot s_{13}^{*}+\left(-s_{13}\right)\left(-s_{13}\right)^{*}+0=1 \\
& \Rightarrow\left|s_{13}\right|^{2}+\left|s_{13}\right|^{2}=1 \\
& \Rightarrow 2\left|s_{13}\right|^{2}=1 \\
& \Rightarrow\left|s_{13}\right|^{2}=\frac{1}{2} \\
& \Rightarrow s_{13}=\frac{1}{\sqrt{2}} \\
& \therefore s_{13}=1 / \sqrt{2}
\end{aligned}
$$

Let's evaluate, $R_{1} C_{1}=R_{2} C_{2}$

$$
\begin{aligned}
& \left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}=\left|s_{12}\right|^{2}+\left|s_{22}\right|^{2}+\left|s_{13}\right|^{2} \\
& \Rightarrow\left|s_{11}\right|^{2}=\left|s_{22}\right|^{2} \\
& \Rightarrow s_{11}=s_{22} \\
& \therefore s_{11}=s_{22}
\end{aligned}
$$

Now Let's calculate, $R_{3} C_{1}$
$R_{3} c_{1}:-s_{13} \cdot s_{11}^{*}+\left(-s_{13}\right) \cdot\left(s_{12}^{*}\right)+0 \cdot s_{13}^{*}=0$

$$
\Rightarrow s_{13} \cdot s_{11}^{*}-s_{13} \cdot s_{12}^{*}=0
$$

$$
\begin{aligned}
& \Rightarrow s_{13}\left(s_{11}^{*}-s_{12}^{*}\right)=0 \\
& \Rightarrow s_{11}^{*}-s_{12}^{*}=0 \\
& \Rightarrow s_{11}^{*}=s_{12}^{*} \\
& \Rightarrow s_{11}^{*}=s_{12}^{*} \\
& \Rightarrow s_{11}=s_{12} \\
& \therefore s_{11}=s_{12}
\end{aligned}
$$

We have, $s_{11}=s_{12}=s_{22}$
Now substitute, $S_{11}=S_{12}$ in the eq of $R_{1} c_{1}$.

$$
\begin{aligned}
& \Rightarrow \quad R_{1} c_{1} \Rightarrow\left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}=1 \\
& \Rightarrow \quad\left|s_{11}\right|^{2}+\left|s_{11}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}=1 \\
& \Rightarrow \quad 2\left|s_{11}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}=1 \\
& \Rightarrow \quad 2\left|s_{11}\right|^{2}+\frac{1}{2}=1 \\
& \Rightarrow \quad 2\left|s_{11}\right|^{2}=\frac{1}{2} \\
& \Rightarrow \quad\left|s_{11}\right|^{2}=\frac{1}{4} \\
& \Rightarrow \quad s_{11}=1 / 2 \\
& \therefore \quad s_{11}=1 / 2
\end{aligned}
$$

i.e., $\quad s_{11}=s_{12}=s_{22}=1 / 2$

$$
\therefore[s]=\left[\begin{array}{ccc}
s_{11} & s_{12} & s_{13} \\
s_{12} & s_{22} & -s_{13} \\
s_{13} & -s_{13} & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / 2 & 1 / 2 & -1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right]
$$

This is the $S$-matrix of $E$-plane Teejunction.

Analysis:-
(1) If input is applied to Port 1 and Port 2 with same magnitude and same phase, then the output at Port z is the difference of the ils Ports.

(2) If input is applied to Port 1 and Port 2 with same magnitude but out of phase, then the output at Port 3 is the sum of the il Ports. Ports $\qquad$
(3) If input is applied at port 3, then the output is considered at Ports 1 \& Port 2 and it will be $180^{\circ}$ out of phase with each other.

Port 1
(out)


Port 2 (out)

$$
\begin{aligned}
& b_{1}=0+0+\frac{a_{3}}{\sqrt{2}}=\frac{a}{\sqrt{2}} \\
& b_{2}=0+0-\frac{a}{3}=-\frac{1}{y} \\
& b_{3}=0-0=0
\end{aligned}
$$

H-plane Tee junction:-
This type of Waveguide junction is formed , by attaching a simple waveguide to the along the broader end of a Rectangular wave guide.
This type of Waveguide junction is called an H -type $T$ junction because the long axis of the main top of the " $T$ " arm is Parallel to the plane of the magnetic lines of force in the waveguide.

- It is characterized by the fact that the two outputs from the top of the " $T$ " section in the waveguide are in phase with eachothe
Construction:-
It consists of totally 3 Ports: Port 1, Port 2 and Port 3 respectively.
Parts 1 and 2 are "collinear Ports" and are considered to be output ports.
Port 3 is considered to be input port.

$\rightarrow$ The sidearm is parallel to the magnetic field linesiso, the H-Plane T-junction is also known as "Current shunt junction".

S-Matrix Calculations-(H-Plane Tee)


When a microwave signal is Propagating through Port 3, it is equally distributed in Port 1 as well as in Port 2, which are considered a's output ports and whose output will be in phase with each other.

$$
\therefore \quad s_{13}=s_{23}
$$

The scattering matrix of the $H$-plane Tee, can be used to describe its Ports.
(i) $[s]$ is a $3 \times 3$ matrix, since there are 3 Ports.

$$
[s]=\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right]
$$

(ii) Scattering coefficients, $S_{13}=S_{23}$ since the outputs at Port 1 and Port 2 are inphase with each other with an inPut at Port 3.
(iii) If Port z is Perfectly matched to the junction and there are no reflections at port 3, then

$$
S_{33}=0
$$

(iv) From the Property of symmetry, $s_{i j}=s_{j i}$

$$
\begin{aligned}
\therefore \quad S_{12} & =S_{21} \\
S_{13} & =S_{31} \\
S_{23} & =S_{32}
\end{aligned}
$$

Now, $[s]=\left[\begin{array}{ccc}s_{11} & s_{12} & s_{13} \\ s_{12} & s_{22} & s_{13} \\ s_{13} & s_{13} & s_{33} \\ 0\end{array}\right]$
(v) From the Unitary property, we have

$$
\begin{aligned}
& {[s][s]^{*}=[I] } \\
& \Rightarrow {\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{12} & s_{22} & s_{13} \\
s_{13} & s_{13} & s_{33}
\end{array}\right]\left[\begin{array}{lll}
s_{11}^{*} & s_{12}^{*} & s_{13}^{*} \\
s_{12}^{*} & s_{22}^{*} & s_{13}^{*} \\
s_{13}^{*} & s_{13}^{*} & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] }
\end{aligned}
$$

R$c_{1}$ :- $\quad s_{11} \cdot s_{11}^{*}+s_{12} \cdot s_{12}^{*}+s_{13} \cdot s_{13}^{*}=1$

$$
\Rightarrow\left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}=1
$$

$R_{2} C_{2}:-$

$$
\begin{aligned}
& s_{12} \cdot s_{12}^{*}+s_{22} \cdot s_{22}^{*}+s_{13} \cdot s_{13}^{*}=1 \\
& \Rightarrow\left|s_{12}\right|^{2}+\left|s_{22}\right|^{2}+\left|s_{13}\right|^{2}=1
\end{aligned}
$$

$R_{3} C_{3}$ :-

$$
\begin{aligned}
& s_{13} \cdot s_{13}^{*}+s_{13} s_{13}^{*}+0=1 \\
\Rightarrow & \left|s_{13}\right|^{2}+\left|s_{13}\right|^{2}=1 \\
\Rightarrow & 2\left|s_{13}\right|^{2}=1 \\
\Rightarrow & \left|s_{13}\right|^{2}=1 / 2 \\
\Rightarrow & \left|s_{13}\right|=1 / \sqrt{2} \\
\therefore & s_{13}=1 / \sqrt{2}
\end{aligned}
$$

Consider, $R_{1} C_{1}=R_{2} C_{2}$

$$
\begin{aligned}
& \Rightarrow\left|s_{11}\right|^{2}+\left|s_{1}\right|^{2}+\left|s_{13}\right|^{2}=\left|s_{12}\right|^{2}+\left|s_{22}\right|^{2}+\left|s_{13}\right|^{2} \\
& \Rightarrow\left|s_{11}\right|^{2}=\left|s_{22}\right|^{2} \\
& \Rightarrow s_{11}=s_{22} \\
& \therefore s_{11}=s_{22}
\end{aligned}
$$

Consider,, $\mathrm{R}_{2} \mathrm{C}_{3}=0$

$$
\begin{aligned}
& s_{11} \cdot s_{13}^{*}+s_{12} \cdot s_{13}^{*}+s_{13} \cdot 0=0 \\
\Rightarrow & s_{11} \cdot s_{13}^{*}+s_{12} \cdot s_{13}^{*}=0 \\
\Rightarrow & s_{13}^{*}\left(s_{11}+s_{12}\right)=0 \\
\Rightarrow & s_{11}+s_{12}=0 \\
\Rightarrow & s_{11}=-s_{12} \\
\therefore & s_{11}=-s_{12} \text { (or) } s_{12}=-s_{11}
\end{aligned}
$$

Now, substitute $S_{12}=-S_{11}$ in $R_{1} c_{1}$

$$
\begin{aligned}
& \left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}=1 \\
\Rightarrow & \left|s_{11}\right|^{2}+\left|s_{11}\right|^{2}+\left|s_{13}\right|^{2}=1 \\
\Rightarrow & 2\left|s_{11}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}=1 \\
\Rightarrow & 2\left|s_{11}\right|^{2}+\frac{1}{2}=1 \\
\Rightarrow & 2\left|s_{11}\right|^{2}=1 / 2 \\
\Rightarrow & \left|s_{11}\right|^{2}=\frac{1}{4} \\
\Rightarrow & s_{11}=\frac{1}{2} \\
& \therefore s_{11}=1 / 2 \text { and } s_{12}=-1 / 2 \text { and } s_{22}=1 / 2
\end{aligned}
$$

$\therefore$ S-matrix of H-Plane Tee junction is given by,

$$
\begin{aligned}
& {[S] }=\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{12} & s_{22} & s_{13} \\
s_{13} & s_{13} & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / \sqrt{2} \\
-1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right] \\
& \therefore\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
&=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / \sqrt{2} \\
-1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \\
& b_{2}=\frac{-a_{1}}{2}-\frac{a_{2}}{2}+\frac{a_{3}}{\sqrt{2}}+\frac{a_{3}}{2} \\
& b_{3}=\frac{a_{1}}{\sqrt{2}}+\frac{a_{2}}{\sqrt{2}}+0
\end{aligned}
$$

Analysis:-
(1) If input is applied at port 1 and port 2 with same magnitude ad same Phase, then the output at port 3 will be the sum of the two input Ports.

(2) If the input is applied at Port 1 and Ports With same magnitude but out of phase then the output at Port 3 is the difference of the two input ports.


$$
\begin{gathered}
a_{3}=0 \\
a_{1}=-a_{2} \\
\text { i.e, } a_{1}=a \text { and } a_{2}=-a \\
b_{3}=\frac{a_{1}}{\sqrt{2}}+\frac{a_{2}}{\sqrt{2}}=\frac{a}{\sqrt{2}}+\left(-\frac{a}{\sqrt{2}}-\frac{a}{\sqrt{2}}=0\right. \\
\therefore o_{3}=0(d i f f ? s)
\end{gathered}
$$

(3) If input is applied at port 3 then the output is considered at ports 1 and 2 and it will be in phase.

$$
\begin{aligned}
& \text { Port } \\
& \text { (In) } \\
& \text { Ports } \\
& \text { (out) } \\
& a_{1}=0 \\
& a_{2}=0 \\
& a_{3}=a \\
& \therefore b_{1}=\frac{\dot{a}_{1}}{2}-\frac{a_{2}}{2}+\frac{a_{3}}{\sqrt{2}}=0-D+\frac{a_{3}}{\sqrt{2}}=\frac{a_{3}}{\sqrt{2}}=\frac{a}{\sqrt{2}} \\
& b_{2}=\frac{a_{1}}{2}+\frac{a_{2}}{2}+\frac{a_{3}}{\sqrt{2}}=0+0+\frac{a}{\sqrt{2}}=\frac{a}{\sqrt{2}} \\
& b_{3}=\frac{x_{1}}{\sqrt{2}}+\frac{a_{2}}{\sqrt{2}}=0+0=0 \\
& \left.b_{1}=9 / \sqrt{2}\right\} \text { Same } \\
& \left.\begin{array}{l}
b_{1}=a / \sqrt{2} \\
b_{2}=a / \sqrt{2}
\end{array}\right\} \begin{array}{l}
\text { same } \\
\text { magnitude } \\
\text { in phase }
\end{array}
\end{aligned}
$$

Magic T-junction (or) E-H Plane T-junction:-
$\rightarrow$ The magic $-T$ is a combination of the "E-type" " and "H-tyPe" junctions.
$\rightarrow$ It Consists of four Ports: two collinear Ports one $\epsilon$-aim and one H -arm.

$\rightarrow$ The diagram above depicts a simplified Version of the Magic T Waveguide junction With its four Ports.
Why it is called magic T-junction....?
$\rightarrow$ The Magic T Waveguide junction Consists of four Ports: Port 1, Port 2, Port 3 \& Port 4.
$\rightarrow$ 'Port 3 \& Port 4' are considered to be' input Ports' While 'Port 1 \& Port 2 ' are considered to be 'output Ports:'
$\rightarrow$ When input is given to Port 4 (E-arm), in general We expect the output signal from the other 3 Ports since four of them together form a junction. But it will not happen so... Instead the output signal $c$ an be obtained Only from Ports 1 and 2 alone and No signal Will reach Port 3 ( H -arm). In other words, electric field doesnot travel through H -arm. The ole at Ports $1 \& 2$ will be of same
magnitude but constitutes $180^{\circ}$ phase shift
$\rightarrow$ Similarly, when input is given to. Port z $(14$. the output can be obtained only from Port 1 \& Port 2, no signal will reach Forty ( $E$-arm). In other words. magnetic fill, does not travel through $E$-arm. The ole af Ports 1\&2 wilt be of same magnitude ad constitutes same phase.
$\rightarrow$ Though the 4 Ports together form a junction, they are just metal plates that are welded together insuch a way so as to form, $a$.junction. Hence, each and every port behaves according to itsown Properties.
$\rightarrow$ Due to this, E-HPlane Tjunction. is also known as "Magic T-junction".
Case (i):- input is given to Port 4 (E-arm)

Port 1.

Case (ii):- input is given to Port $3(\mathrm{H}$-arm)

$$
\text { , Fort } c_{1}
$$

$$
(\text { Poole) }
$$

Point 1.01 PI

operation:-
$\rightarrow$ To look at the operation of the Magic $T$ Waveguide junction, take the example of When a signal is applied into the "Emplane", 1 arm. It will divide into two out of Phase components as it Passes into the leg consisting of the " $a$ " and ' $b$ " arms. However, no signal will enter the "H plane" arm, as a result of the fact that a zero Potential exists there.
$\rightarrow$ This occurs because of the signal conditrons needed to create the signals in the " $\underline{a}$ " and " $\underline{\text { " }}$ arms.
$\rightarrow$ similarly, when a signal is applied to the $H$-plane arm, no signal appears at the "E-Plane" arm and the two signals appearing at the " $a$ " and " $b$ " arms are inphase With each other.
$\rightarrow$ When a signal enters the ' $a$ ' or ' $b$ ' arm of the magic $T$ waveguide junction then a signal appears at the $E$ aid $H$ plane Ports but not at the other ' $b$ ' or ' $a$ ' arm.

fiji):-



S-Matrix Calculations - (Magic T-junction):-
fig:- Mag
scattering matrix of the Magic Tee, can be used to describe its properties.
(i) $[5]$ is: $4 \times 4$. matrix, since there are 4 Ports

$$
\begin{aligned}
& {[s]=\left[\begin{array}{llll}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
s_{31} & s_{32} & s_{33} & s_{34} \\
s_{41} & s_{42} & s_{43} & s_{44}
\end{array}\right]}
\end{aligned}
$$

(ii) Let US consider, H-Plane Tee junction

$$
S_{23}=S_{13}
$$

Consider, E-plane Tee junction

$$
s_{24}=-s_{14}
$$

Now, Port 3 and Port 4 are isolated to each other ie. $\quad S_{4}=S_{43}=0$
(iii) If Port 3 and Port cs are Perfectly matched to the junction and there are no reflections at Port 3 and Port 4, then

$$
S_{33}=S_{44}=0
$$

(iv) From the symmetric Property, $S_{i j}=s_{j i}$

$$
\begin{aligned}
\therefore \quad S_{12} & =S_{21} ; \quad S_{13}=S_{31} ; \quad S_{23}=S_{32} \\
S_{34} & =S_{43} ; \quad S_{24}=S_{42} ; \quad S_{41}=S_{14}
\end{aligned}
$$

Now, $[s]=\left[\begin{array}{llll}s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{23} & s_{24} \\ s_{31} & s_{32} & s_{33} & s_{34} \\ s_{41} & s_{42} & s_{43} & s_{44}\end{array}\right]=\left[\begin{array}{llll}s_{11} & s_{12} & s_{13} & s_{14} \\ s_{12} & s_{22} & s_{13} & -s_{14} \\ s_{13} & s_{13} & 0 & 0 \\ s_{14} & -s_{14} & 0 & 0\end{array}\right]$.
From unitary property
(v) From unitary Property,

$$
\begin{gathered}
{[S][S]^{*}=[I]} \\
\Rightarrow\left[\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{12} & S_{22} & S_{13} & -S_{14} \\
S_{13} & S_{13} & 0 & 0 \\
S_{14} & -S_{14} & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
S_{11}^{*} & S_{12}^{*} & S_{13}^{*} & S_{14}^{*} \\
S_{12}^{*} & S_{22}^{*} & S_{13}^{*} & -S_{14}^{*} \\
S_{13}^{*} & S_{13}^{*} & 0 & 0 \\
S_{14}^{*} & -S_{14}^{*} & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$\underline{\underline{R_{1} C_{1}}:-} s_{11} \cdot s_{11}^{*}+s_{12} \cdot s_{12}^{*}+s_{13} \cdot s_{13}^{*}+s_{14} \cdot s_{14}^{*}=1$

$$
\Rightarrow\left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}+\left|s_{14}\right|^{2}=1
$$

$$
R_{2} c_{2}:-s_{12} \cdot s_{12}^{*}+s_{22} \cdot s_{22}^{*}+s_{13} \cdot s_{13}^{*}+\left(-s_{14}\right) \cdot\left(-s_{14}^{*}\right)=1
$$

$$
\Rightarrow\left|s_{12}\right|^{2}+\left|s_{22}\right|^{2}+\left|s_{13}\right|^{2}+\left|s_{14}\right|^{2}=1
$$

$R_{3} C_{3}:-S_{13} \cdot S_{13}^{*}+S_{13} \cdot S_{13}^{*}+\left(-s_{14}\right)(-110+0=1$

$$
\Rightarrow\left|s_{13}\right|^{2}+\left|s_{13}\right|^{2}=1
$$

$$
\begin{aligned}
& \Rightarrow 2\left|s_{13}\right|^{2}=1 \\
& \Rightarrow\left|s_{13}\right|^{2}=1 / 2 \\
& \Rightarrow s_{13}=1 / \sqrt{2} \\
& \therefore s_{13}=1 / \sqrt{2}
\end{aligned}
$$

$R^{R_{4} c_{4}}:-S_{14} \cdot s_{14}^{*}+s_{14} \cdot s_{14}^{*}+0+0=1$

$$
\begin{aligned}
& \Rightarrow\left|s_{141}\right|^{2}+\left|s_{141}\right|^{2}=1 \\
& \Rightarrow 2\left|s_{14}\right|^{2}=1 \\
& \Rightarrow\left|s_{14}\right|^{2}=1 / 2 \\
& \Rightarrow s_{14}=1 / \sqrt{2} \\
& \therefore s_{14}=1 / \sqrt{2}
\end{aligned}
$$

Consider, $R_{1} c_{1}=R_{2} c_{2}$

$$
\begin{aligned}
& \Rightarrow\left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}+\left|s_{14}\right|^{2}=\left|s_{12}\right|^{2}+\left|s_{22}\right|^{2}+\left.s_{13}\right|^{2}+\mid \\
& \Rightarrow\left|s_{11}\right|^{2} \\
& \left.\Rightarrow\right|^{2}=\left|s_{22}\right|^{2} \\
& \Rightarrow s_{11}=s_{22} \\
& \therefore s_{11}=s_{22}
\end{aligned}
$$

Consider, $R_{4} c_{1}$

$$
\begin{aligned}
& \Rightarrow s_{14} \cdot s_{11}^{*}+-s_{14} \cdot s_{12}^{*}+0+0=0 \\
& \Rightarrow s_{14} \cdot s_{11}^{*}-s_{14} \cdot s_{12}^{*}=0 \\
& \Rightarrow s_{14}\left(s_{11}^{*}-s_{12}^{*}\right)=0 \\
& \Rightarrow s_{11}^{*}-s_{12}^{*}=0 \\
& \Rightarrow s_{11}^{*}=s_{12}^{*} \\
& \Rightarrow s_{11}=s_{12} \quad \therefore s_{11}=s_{12}
\end{aligned}
$$

We have, $S_{11}=S_{12}=S_{22}$
substitute $R_{1} C_{1}$ with $S_{11}=S_{12}$
$\underline{R_{1} c_{1}}: \quad\left|s_{11}\right|^{2}+\left|s_{12}\right|^{2}+\left|s_{13}\right|^{2}+\left|s_{14}\right|^{2}=1$

$$
\begin{aligned}
& \Rightarrow\left|s_{11}\right|^{2}+\left|s_{11}\right|^{2}+\left|s_{13}\right|^{2}+\left|s_{14}\right|^{2}=1 \\
& \Rightarrow \quad 2\left|s_{11}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}+0=1 \\
& \Rightarrow 2\left|s_{11}\right|^{2}+\frac{1}{2}+\frac{1}{2}=1 \\
& \Rightarrow 2\left|s_{11}\right|^{2}+1=1 \\
& \Rightarrow 2\left|s_{11}\right|^{2}=0 \\
& \Rightarrow \quad\left|s_{11}\right|^{2}=0 \\
& \Rightarrow \quad s_{11}=0
\end{aligned}
$$

$$
\therefore S_{11}=S_{12}=S_{22}=0
$$

Finally, $s$ matrix is given by,

$$
[s]=\left[\begin{array}{cccc}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{12} & s_{22} & s_{13} & -s_{14} \\
s_{13} & s_{13} & 0 & 0 \\
s_{14} & -s_{14} & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0
\end{array}\right]
$$

We know that, $[b]=[s][a]$

$$
\begin{aligned}
& \therefore\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0
\end{array}\right] \quad\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right] \\
& b_{1}=\frac{a_{3}}{\sqrt{2}}+\frac{a_{4}}{\sqrt{2}} \quad \begin{array}{l}
b_{3}=\frac{a_{1}}{\sqrt{2}}+\frac{a_{2}}{\sqrt{2}} \\
b_{2}=\frac{a_{3}}{\sqrt{2}}-\frac{a_{4}}{\sqrt{2}} \quad b_{4}=\frac{a_{1}}{\sqrt{2}}-\frac{a_{2}}{\sqrt{2}}
\end{array},
\end{aligned}
$$

Analysis:-
(1) If input is given to Port 3, then the signal doesnot ProPagate through. Port, outPut is obtained at Port 1 and Port, and is same magnitude aid same $\mathrm{Ph}_{\mathrm{p}}$, port 4 (no signal)

Port 1
Port 2
(out)
(out)
Port 3
(In)

$$
\left.\begin{array}{rl}
a_{3} & =a ; \quad a_{1}=a_{2}=a_{4}=0 \\
\therefore \quad b_{1} & =\frac{a_{3}}{\sqrt{2}}+\frac{a_{4}}{\sqrt{2}}=\frac{a}{\sqrt{2}}+0=\frac{a}{\sqrt{2}} \\
b_{2} & =\frac{a_{3}}{\sqrt{2}}-\frac{a_{4}}{\sqrt{2}}=\frac{a}{\sqrt{2}}-0=\frac{a}{\sqrt{2}}
\end{array}\right\} \begin{aligned}
& \text { Same } \\
& m_{3} \\
& b_{3}
\end{aligned}=\frac{a_{1}}{\sqrt{2}}+\frac{a_{2}}{\sqrt{2}}=0+0=0 .
$$

(2). If input is given to Ports, then the signal doesnot propagate through Ports output is obtained at Ports aid Ports With same magnitude but with a Phase shift of $180^{\circ}$.

(No Signal)

$$
\left.\left.\begin{array}{rl}
a_{4}=a ; \quad a_{1}=a_{2}=a_{3}=0 \\
\therefore \quad b_{1} & =\frac{a_{3}}{\sqrt{2}}+\frac{a_{4}}{\sqrt{2}}=0+\frac{a}{\sqrt{2}}=\frac{a}{\sqrt{2}} \\
b_{2}=\frac{a_{3}}{\sqrt{2}}-\frac{a_{4}}{\sqrt{2}}=0-a / \sqrt{2}=-a / \sqrt{2}
\end{array}\right\} \begin{array}{c}
\text { same magnitude } \\
\text { but out of } \\
\text { Phase }
\end{array}\right\}
$$

(3). If input is given to Port 1 and Ports With same magnitude and same phase. then the output at Port 3 is the summation of the two input Ports 1 whereas at Port 4 the output is the difference of the two ip Ports.

$$
\text { i.e, } \begin{aligned}
& a_{1}=a_{2}=a ; a_{3} \\
& \therefore b_{1}=\frac{a_{3}}{\sqrt{2}}+\frac{a_{4}}{\sqrt{2}}=0 \\
& b_{2}=\frac{a_{3}}{\sqrt{2}}-\frac{a_{4}}{\sqrt{2}}=0=0 \\
& b_{3}=\frac{a_{1}}{\sqrt{2}}+\frac{a_{2}}{\sqrt{2}}=\frac{a+}{\sqrt{2}} \frac{a}{\sqrt{2}}=\frac{2 a}{\sqrt{2}}=\sqrt{2 a} \text { (summation) } \\
& b_{4}=\frac{a_{1}}{\sqrt{2}}-\frac{a_{2}}{\sqrt{2}}=\frac{a}{\sqrt{2}}-\frac{a}{\sqrt{2}}=0 \text { (difference) } \\
& \text { of ip Ports }
\end{aligned}
$$

(4). If input is given to Port 1 and Port 2 with same magnitude and out of Phase, then the output at port 3 is the difference of the two input ports, whereas the output at port 4 is the Summation of the two input ports.

$$
\begin{aligned}
& \text { ide., } \quad a_{1}=-a_{2} \\
& a_{1}=a \text { and } a_{2}=-a \\
& a_{3}=a_{4}=0 \\
& b_{1}=\frac{a_{3}}{\sqrt{2}}+\frac{a_{4}}{\sqrt{2}}=0+0=0 \\
& b_{2}=\frac{a_{3}}{\sqrt{2}}-\frac{a_{4}}{\sqrt{2}}=0-0=0 \\
& \left.b_{3}=\frac{a_{3}}{\sqrt{2}}+\frac{a_{4}}{\sqrt{2}}=\frac{a}{\sqrt{2}}-\frac{a}{\sqrt{2}}=0 \text { (difference of the } \begin{array}{l}
\text { ilo Ports }
\end{array}\right) \\
& b_{4}=\frac{a_{3}}{\sqrt{2}}+\frac{a_{4}}{\sqrt{2}}=\frac{a}{\sqrt{2}}+\frac{a}{\sqrt{2}}=\frac{2 a_{1}}{\sqrt{2}}=\sqrt{2} a\binom{\text { Summation }}{\text { of the isp Ports) }}
\end{aligned}
$$

Applications of Magic Tjunction:-
(1). To measure the unknown impedance

$\rightarrow$ When input is given to Ports, half of the input power goes to Ports and the remaining half goes to Port 1 .
$\rightarrow$ There are reflections from Port 1 ad Port 2 to Port 4 . Let,
$P_{1}, P_{2} \rightarrow$ reflection coefficients
op of
detector $\frac{1}{\sqrt{2}}\left(\frac{a_{3}}{\sqrt{2}} P_{1}\right)-\frac{1}{\sqrt{2}}\left(\frac{a_{3}}{\sqrt{2}} P_{2}\right)=0$

$$
\begin{align*}
& \Rightarrow \quad \frac{a_{3}}{\sqrt{2}} R_{1}-\frac{a_{3}}{\sqrt{2}} R_{2}=0 \\
& \Rightarrow \quad\left(P_{1}-P_{2}\right)=0 \rightarrow P_{1} \tag{1}
\end{align*}
$$

$\rightarrow$ This is Possible only When known impedance is equal to unknown impedance. To attain this condition, the known impedance value is changed until! the null detector shows zero value. Then known impedance becomes equal to unknown impedance. Hence there
would be no reflections from ports ad Port 2 to Port 4. Therefore $P_{1}-P_{2}=0 \Rightarrow P_{1}=P_{2}$,
$\rightarrow$ The impedance at which, null detector displays zero value, is referred to as unknown impedance.
$\rightarrow$ In this way, Magic Tjunction can be used to determine an unknown impedance, value.
(2). Magic Tjunction acts as a "Duplexer" (ie., Used for Two-way communication) Port 4


When input is given to Port 1, half the input Power goes to Port 4 and half of the Power goes to port 3. Port 3 consists of a perfectly matched load and hence there would be no reflection of power from Port 3 to Port $1(T x)$. Port 4 consist's of an Antenna. A Part of the input Power transmitted from Port 1 to Port 4 , is reflect back by the Antenna, to Part 1. Now, there exists a. Possibility for two-way communi-
Cation an in this way magic T junction can be used as a duplexer.
(3). The most common application of this type of Waveguide junction is as the mixer section for microwave rad, receivers. Port 4

Antenna

$\rightarrow$ Microwave mixers translate the freq. nay of electromagnetic signals.
$\rightarrow$ This functionality is vital for an enormous number, of applications such as military radar and surveillance, RF comm unications, radio as tronomy and biological sensing.
$\rightarrow$ A frequency, mixer is a 3-port RF electronic circuit: Two of the Ports are "input" Ports and the remaining Port is an "output" Port. An ideal mixer "mixes" the two input signals in such a way that the output signal frequency is either the sum (or) difference of the inputs. In other wards, $f_{\text {wit }}=f_{\text {in, }}+f_{\text {in 2 }}$

Drawback of Magic T-junction:-
$\rightarrow$ One of the disadvantages of the Magic, $T$ junction is, reflections arise from the impedance mismatches that naturally 1 occurs within it.
$\rightarrow$ These reflections not only give rise to Power loss, but at Peak voltage Points, they can give rise to arcing when used, with high Power transmitters.
$\rightarrow$ The reflections can be reduced by using matching techniques
$\rightarrow$ Normally, Posts (or )Screws are Used within the E-Plane and H-Plane Ports.'
$\rightarrow$ These solutions improve the impedance matches and hence the reflections, but there is a Power handling capacity penalty.
**Rat race T-junction (or) HYbrid Ring Waveguide junction:-
$\rightarrow$ This form of Waveguide junction overcomes the power limitation of the rragnetic $T$ waveguide junction.
$\rightarrow$ A hybrid ring waveguide junction is a further development of the magic $T$.
$\rightarrow$ The hybrid ring is used Primarily in highPower radar and communication systems Where it acts as a duplexer - allowing the same antenna to be used for transmit aud receive functions.
$\rightarrow$ During the transmit Period, the junction Couples microwave energy from the transmitter to the
antenna while blocking energy from the receiver input. Then as the receive cyclestaryy the hybrid ring waveguide junction couples energy from the antenna to the receiver. During this Period; it Prevents energy from reaching the transmitter.

Construction:-
$\rightarrow$ Rat Race T-junction/Hybrid ring Waveguide junction is constructed from a circular ring of rectangular Waveguide - a bit like an annulus.
$\rightarrow$ The Ports are then joined to the annulus at the required points.
$\rightarrow$ Again, it the signal enters at one port, it doesnot appear at all the others.
$\rightarrow$ The junction Provides high levels of isolation although the exact values should be checked in the datastects for the Particular junction being considered.
$\rightarrow$ For Proper operation, the total Circumference of the ring is maitained as $\frac{6 \lambda_{g}}{4} \approx 1.5 \lambda_{\mathrm{g}}$


Scanned with CamScanner
operation:-
$\rightarrow$ If input is given to Port 1, it splits/ is equally distributed equally to Ports 2 all 4 both in clock-wise and Anti-clockwise direction But the signal doesnot Propagate through Port 3.
$\rightarrow$ If input is given to Port 2, it is equally distributed to ports $1 \& 3$, both in clock-wise' and Anti-clockwise direction. But the signal does not Propagate through Port 4 .
$\rightarrow$ If input is given to port 3 , it is equally distributed to Ports 2 \& 4 both in clock-wise and Anti-clockwise direction. But the signal. doesnot Propagate through Port 1 .
$\rightarrow$ If input is given to port 4, it is equally distributed to Ports $1 \& 3$, both in clock-wise and Anti-clockwise direction. But the signal. does not Propagate through Port $2 \%$
Scattering matrix:-

$$
[s]=\left[\begin{array}{llll}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
s_{31} & s_{32} & s_{33} & s_{34} \\
s_{41} & s_{42} & s_{43} & s_{44}
\end{array}\right]=\left[\begin{array}{cccc}
0 & s_{12} & 0 & s_{14} \\
s_{12} & 0 & s_{23} & 0 \\
0 & s_{23} & 0 & s_{34} \\
s_{14} & 0 & s_{34} & 0
\end{array}\right]
$$

Waveguide junctions are an essential type of configuration that enable Power to be split and combined in a variety of ways. They considerably simplify many systems, and although many are Quite expensive, they Provide a high Performance method of achieving their function.
** Directional Couplers:-
$\rightarrow$ A directional coupler is a device that samples small amount. of Microwave Power for measurement Purposes. The Power measurements include incident poi reflected Power, VSWR values, etc...
$\rightarrow$ It is a metallic PiPe, that looks like a Waveguide but acts as a coupler.

Construction:-
$\rightarrow$ A directional coupler is formed by welding two rectangular waveguides. out of which one is a straight wave. guide while the other is a bent waveguin: together, in such a way that there exists a hollow spacing blu them
$\rightarrow$ Directional coupler is a 4-Port Waveguide junction consisting of a "Primary main Waveguide" and a "secondary auxiliary waveguide."
$\rightarrow$ The following figure shows the image of $a$ directional coupler.


It can bow shown symbolically as shown the below figure:

fig:- Directional Coup'er
Directional coupler is used to couple the Microwave power which may be unidirectional or' bi-directional.
Properties of Directional Couplers:-
The properties of an ideal directional couple are as follows:
$\rightarrow$ All the terminations are matched to the
$\rightarrow$ Ports.
$\rightarrow$ When the Power travels from Port 1 to Port 2, some of its Portion is coupled to Port 4, but not to Port 3 .
$\rightarrow$ As it is also a bidirectional coupler, when the. Power travels from Port 2 to Port 1.
$\therefore$ Some Portion, of it gets coupled to Ports but not to Port 4.
$\rightarrow$ If the Power is incident through ports, a Portion of it is coupled to Port, but not to Port 1.
$\rightarrow$ If the Power is incident through Port 4 . a Portion of it is coupled to Ports, but not to Port 2 .
$\rightarrow$ Port 1 and Ports are decoupled as Ports and Port 4.

Ideally, the output of port 3 should be zero. However, Practically, a small amount of Power called back Power is observed at Port 3. The following figure indicates the power flow in a directional coupler.


Where,
$P_{i}=$ Incident Power at Port 1 :
$P_{r}=$ Received Power at Ports
$P_{f}=$ Forward coupled Power at Port 4
$P_{b}=$ Backwaid/Back Power at Port
operation:-
$\rightarrow$ Whenever a microwave signal is given as input to one of the four Ports, it is considered intermis of "Power.
$\rightarrow$ When input is given to Port 1, a Portion of the input Power goes directly to Porte ad Some of Portion goes to Port 4. If at all there are any reflections in the input Power, they will be send to Port 3 .
$\rightarrow$ Now, Port 1 is considered to be "incident Port", the Power associated is referred to as incident Power at Portly which is indicated as "Pi".
received at Port 2, Port 2 is referred to as "Received Port" and the Power associated is referred to as Received Power at Ports Which is indicated by "Pr".
$\rightarrow$ While a Portion of the input Power, is taking diversion and Propagating through Port 4 . Port 4 is reffered to as "Forwarded Power"and the power associated, is referred to as forward Power at Port 4, Which is indicated by "Pf".
$\rightarrow$ Incase of any reflections in the input Power, it will be reflected back to Ports. Hence, Port 3 is referred to as "back Port" and the Power associated, is referred to as Back Power at Port 3, which is indicated by "Pb".
$\rightarrow$ Ingeneral, Back Power $\left(P_{b}\right)$ of a directional coupler is very very small.

Case (i):-
Port 1

Port 3
fig:-ilp Ports
Port $1 \rightarrow$ incident Port
Port $2 \rightarrow$ Received Port
Port 4 $\rightarrow$ forward Power coupling Port
Port $2 \rightarrow$ Back. Port

Case (ii):-
Porte Port 1

Following are the Parameters used to define the Performance of a directional coupler: (i) coupling factor
(ii) Directivity
(iii) Isolation
(iv) Return loss
(i) Coupling factor (c):-

The coupling factor of a directional couple is defined as "the ratio of incident Pour. to the forward power".
It is measured in $d B$.

$$
C=10 \log _{10}^{\left(P_{i} / P_{f}\right)} \quad\left(d_{B}\right)
$$

TYpically, for a directional coupler, $C=20 d B$

$$
\begin{aligned}
& \therefore 20=10 \log _{110}^{\left(P_{i} / P_{f}\right)} \\
& \Rightarrow 2=\log _{10}^{\left(P_{i} / P_{f}\right)} \\
& \Rightarrow(10)^{2}=\frac{P_{i}}{P_{f}} \\
& \Rightarrow 100=\frac{P_{i}}{P_{f}} \\
& \Rightarrow P_{f}=\frac{P_{i}}{100}
\end{aligned}
$$

(ii) Directivity (D):-

The directivity of a directional coupler is defined as "the ratio of forward Power to the back power". It is measured in dB.

$$
D=10 \log _{10}^{\left(P_{f} / P_{b}\right)}\left(d B^{\prime}\right)
$$

Typically, for a directional coupler, $D=60 \mathrm{~dB}$

$$
\begin{aligned}
& \therefore G 0=10 \log _{10}^{\left(P_{f} / P_{b}\right)} \\
& \Rightarrow G=\log _{10}^{\left(P_{f} / P_{b}\right)} \\
& \Rightarrow(10)^{6}=\frac{P_{f}}{P_{b}} \\
& \Rightarrow P_{b}=\frac{P_{f}}{(10)^{6}} \\
& \Rightarrow P_{b}=\frac{P_{i}}{(10)^{8}}
\end{aligned}
$$

(iii) Isolation:-

It defines the directive properties of a directional coupler. It is defined as "the ratio of incident Power to the back Power". It is measured in $d B$.

$$
I=10 \log _{10}^{\left(P_{1} / P_{b}\right)}(d B)
$$

Isolation in $d B=$ (coupling factor) + (Directivity)

$$
=10 \log _{10}^{\left(P_{i} \mid P_{f}\right)}+10 \log _{10}^{\left(P_{f} / P_{b}\right)}
$$

(iv) Return loss:-

For signal transmission, return loss defines the actually transmitted Power to the received Power at the main guide. It is denoted by " $R$ " and is given as:

$$
R=10 \log _{10}\left(P_{i} / P_{r}\right)\left(d_{B}\right)
$$

The noteworthy Point over here is that $9 \|$ the parameters of the directional coupler are measured in $d B$.
Scattering matrix of Directional Coupler:-
As directional couplers are 4 Port devices, th es generally it is given as:

$$
S=\left[\begin{array}{llll}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
s_{31} & s_{32} & s_{33} & s_{34} \\
s_{41} & s_{42} & s_{43} & s_{44}
\end{array}\right]
$$

All the four Ports of the directional coupler are matched Perfectly. Thereby, ensuring that no Power gets reflected back towards the port. Thus, the diagonal elements will be 0 .

$$
\begin{aligned}
& S_{11}=S_{22}=S_{33}=S_{44}=0 \\
& \therefore \quad S=\left[\begin{array}{cccc}
0 & S_{12} & S_{13} & S_{14} \\
S_{21} & 0 & S_{23} & S_{24} \\
S_{31} & S_{32} & 0 & S_{34} \\
S_{41} & S_{42} & S_{43} & 0
\end{array}\right]
\end{aligned}
$$

By the property of symmetry, $S_{i j}=S_{j i}$
Therefore,

$$
\begin{aligned}
& s_{12}=s_{21} \\
& s_{13}=s_{31} \\
& s_{14}=s_{41} \\
& s_{23}=s_{32} \\
& s_{24}=s_{42} \\
& s_{34}=s_{43}
\end{aligned}
$$

so, the matrix will be given as,

$$
S=\left[\begin{array}{cccc}
0 & s_{12} & s_{13} & s_{14} \\
s_{12} & 0 & s_{23} & s_{24} \\
s_{13} & s_{23} & 0 & s_{34} \\
s_{14} & s_{24} & s_{34} & 0
\end{array}\right]
$$

Ideally, Port 1, Port 3 and Port 2, Port 4 are isolated, Withrespect to each other. so,

$$
\begin{aligned}
s_{13} & =s_{31}=0 \\
s_{24} & =s_{42}=0 \\
s & =\left[\begin{array}{cccc}
0 & s_{12} & 0 & s_{14} \\
s_{12} & 0 & s_{23} & 0 \\
0 & s_{23} & 0 & s_{34} \\
s_{14} & 0 & s_{34} & 0
\end{array}\right]
\end{aligned}
$$

According to the identity property,

$$
\begin{aligned}
& {[S]\left[S^{*}\right]=[I]} \\
& {\left[\begin{array}{llll}
0 & S_{12} & 0 & S_{14} \\
S_{12} & 0 & S_{23} & 0 \\
0 & S_{23} & 0 & S_{34} \\
S_{14} & 0 & S_{34} & 0
\end{array}\right]\left[\begin{array}{llll}
0 & S_{12}^{*} & 0 & S_{14}^{*} \\
S_{12}^{*} & 0 & S_{23}^{*} & 0 \\
0 & S_{23}^{*} & 0 & S_{34}^{*} \\
S_{14}^{*} & 0 & S_{34}^{*} & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& \text { Further, }
\end{aligned}
$$

Further,
Forward Power: $S_{12}=S_{34}=P$
While the coupled Power: $s_{14}=s_{23}=Q$
Thus, the scattering matrix of the directional coupler will be given as,

$$
S=\left[\begin{array}{llll}
0 & P & 0 & Q \\
P & 0 & Q & 0 \\
0 & Q & 0 & P \\
Q & 0 & P & 0
\end{array}\right]
$$

Applications:-
$\rightarrow$ It is used to measure incident and reflects, Power along with measuring voltage standing wave ratio values.
$\rightarrow$ It also Provides the path to the signal towards the receiver and used for the Purpose of unidirectional wave laue aching.
TYPes of Directional Coupler:-
Multi-Hole Directional coupler:-
$\rightarrow$ It is a four Port waveguide junction cons: sting of Primary Wavelength and a secondary auxiliary waveguide.
$\rightarrow$ They can sample a small amount of microwave Power for measurement Purpose.
$\rightarrow$ They are designed to measure incident and reflected Power, SWR values, Provide a signal Path to a receiver (or) Perform other desirable operations.
$\rightarrow$ The coupling is done through hole's on the broad side of the Waveguide.
$\rightarrow$ The diameter of no of holes in a row and the no. of rows vary according to coupling sector required.
$\rightarrow$ Scientific Microwave offers $3 d B, \operatorname{lodB}$ and gods couplers to its customers with, minimum VSWR.

Port 4 $P_{b}$ Pf Port 3

Port 1
$\qquad$ $P_{t}$ Ports fig:- Multi-hole directional coupler
S-Matrix Calculations:-
(i) $[s]$ is a square matrix of order $4 \times 4$, since there are 4 four Ports.

$$
\therefore[s]=\left[\begin{array}{llll}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
s_{31} & s_{32} & s_{33} & s_{34} \\
s_{41} & s_{42} & s_{43} & s_{44}
\end{array}\right]
$$

(ii) $[S]$ is a symmetric matrix $i \cdot e, s_{i j}=S_{j i}$

$$
\begin{array}{rl|l}
\therefore & s_{12}=s_{21} & s_{41}=s_{14} \\
s_{13}=s_{31} & s_{42}=s_{24} \\
& s_{32}=s_{23} & s_{43}=s_{34}
\end{array}
$$

iii) Consider, a Perfectly matched directional coupler.

$$
\therefore S_{11}=S_{22}=S_{33}=S_{44}=0
$$

(iv. Port 1, Port 3 and Port 2, Ports are isolated to each other

$$
\therefore \quad \begin{aligned}
& s_{13}=s_{31}=0 \\
& s_{24}=s_{42}=0
\end{aligned}
$$

Now, the updated s-matrix is given by,

$$
[s]=\left[\begin{array}{cccc}
0 & s_{12} & 0 & s_{14} \\
s_{12} & 0 & s_{23} & 0 \\
0 & s_{23} & 0 & s_{34} \\
s_{14} & 0 & s_{34} & 0
\end{array}\right]
$$

(v) From the unitary Property, $[s]\left[s^{*}\right]=[$,

$$
\Rightarrow\left[\begin{array}{cccc}
0 & s_{12} & 0 & s_{14} \\
s_{12} & 0 & s_{23} & 0 \\
0 & s_{23} & 0 & s_{34} \\
s_{14} & 0 & s_{34} & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & s_{12}^{*} & 0 & s_{14}^{*} \\
s_{12}^{*} & 0 & s_{23}^{*} & 0 \\
0 & s_{23}^{*} & 0 & s_{34}^{*} \\
s_{14}^{*} & 0 & s_{34}^{*} & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$



$$
\Rightarrow\left|s_{12}\right|^{2}+\left|s_{14}\right|^{2}=1
$$

$R_{2} c_{2}:-s_{12} \cdot s_{12}^{*}+0+s_{23} \cdot s_{23}^{*}+0=1$.

$$
\Rightarrow\left|s_{12}\right|^{2}+\left|s_{23}\right|^{2}=1
$$

$\underline{\underline{R_{3} c_{3}}:-} 0+s_{23} \cdot s_{23}^{*}+0+s_{34} \cdot s_{34}^{*}=1$

$$
\Rightarrow\left|s_{23}\right|^{2}+\left|s_{34}\right|^{2}=1
$$

Ry $c_{4}:-s_{14} \cdot s_{14}^{*}+0+s_{34} \cdot s_{34}^{*}+0=1$

$$
\Rightarrow\left|s_{14}\right|^{2}+\left|s_{34}\right|^{2}=1
$$

$\underline{R_{1} C_{3}=0}$ :-

$$
s_{12} \cdot s_{23}^{*}+s_{14} \cdot s_{34}^{*}=0
$$

consider, $\quad R_{1} c_{1}=R_{2} c_{2}$

$$
\begin{aligned}
& \Rightarrow\left|s_{12}\right|^{2}+\left|s_{14}\right|^{2}=\left|s_{12}\right|^{2}+\left|s_{23}\right|^{2} \\
& \Rightarrow\left|s_{14}\right|^{2}=\left|s_{23}\right|^{2} \\
& \Rightarrow \quad s_{14}=s_{23} \\
& \therefore s_{14}=s_{23}
\end{aligned}
$$

Similarly, consider $R_{2} C_{2}=R_{3} C_{3}$

$$
\begin{aligned}
& \Rightarrow\left|s_{12}\right|^{2}+\left|s_{23}\right|^{2}=\left|s_{23}\right|^{2}+\left|s_{34}\right|^{2} \\
& \Rightarrow\left|s_{12}\right|^{2}=\left|s_{34}\right|^{2} \\
& \Rightarrow \quad s_{12}=s_{34} \\
& \therefore s_{12}=s_{34}
\end{aligned}
$$

Let, $S_{12}=S_{34}=P=S_{34}^{*} \quad(P \rightarrow$ some Real value $)$
We have, $R_{1} c_{3}$ as

$$
\begin{aligned}
& s_{12} \cdot s_{23}^{*}+s_{14} \cdot s_{34}^{*}=0 \\
\Rightarrow & P s_{23}^{*}+s_{23} \cdot P=0 \\
\Rightarrow & P\left(s_{23}^{*}+s_{23}\right)=0 \\
\Rightarrow & s_{23}^{*}+s_{23}=0 \\
\Rightarrow & s_{23}^{*}=-s_{23}
\end{aligned}
$$

Let $S_{23}=j P$
$\therefore$ The scattering matrix is given by,

$$
[s]=\left[\begin{array}{cccc}
0 & s_{12} & 0 & s_{14} \\
s_{12} & 0 & s_{23} & 0 \\
0 & s_{23} & 0 & s_{34} \\
s_{14} & 0 & s_{34} & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & p & 0 & j p \\
p & 0 & j p & 0 \\
0 & j p & 0 & p \\
j p & 0 & p & 0
\end{array}\right]
$$

Single-trole directional coupler
(or):
Bethe-hole directional coupler
$\rightarrow$ Bethe-hole is a waveguide directional coupler, using a single hole, and it works over a narrow $b$ and.
$\rightarrow$ The Bethe-hole is a reverse coupler, as opposed to most Waveguide couplers that Use multi-hole and are foward couplers.
$\rightarrow$ The origin of the name comes from a paper published by H.A. Bethe titled "Theory of Diffraction by small holes," Published iin the physical Review, back in 1942 .
$\rightarrow$ The following figure represents a single-hole/Bethe-hole directional coupler.

Port 4
Port 2
$\longrightarrow$ Main waveguide
$\longrightarrow$ Auxiliary waveguide
Ports
$\therefore$ Port 3
fig: Brthehot directional courter
$\rightarrow$ It is a single-hote directional coupler, the hole is located at the center of the broadwall waveguide.
$\rightarrow$ It consists of a Primarylmain waveguide and a secondary/ auxiliary waveguide which are placed at ' $\theta$ ' inclination.
$\rightarrow$ when the Power travels from Port p to Port 2, through the Bethe-hole, the hole also known as aperture acts $a_{A}$ electric dipole. And its size is less th, the wavelength of the wave.
$\rightarrow$ Therefore it radiates. Power to the secondary, waveguide and this entire phenomenon is referred to as "dipole radiation".
$\rightarrow$ In other words, the coupling to the auxiliary waveguide is due to the radiation radiated by the electric dipole (aperture).
$\rightarrow$ Finally, the Power eritering the two waveguib (Port \& Port 3) can be controlled by varying ' $\theta$ ' and wavelength ( $\lambda$ ) of the microwave signal through the waveguide.
Note:- S-matrix Saluiation are same for the both types of dir..tior couplers
Ferrite Components:-
$\rightarrow$ Ferrite is a high resistance magnetic material and it consists of mainly ferrite oxidel along with one (or) more other metals.
$\rightarrow$ Ferrite material is extremely useful at microwave frequencies.
$\rightarrow$ Electromagnetic wave Passes through ferrites with negligible attenuation.
$\rightarrow$ Electromagnetic wave propagation undergoes Phase shift due to ferrites, which can be influenced by the applied DC magnetic field e

Properties of ferrite components:-
Ferrite ComPonents Constitute Peculiar Proper_' ties as listed below:
(1) Ferrites are "non-metallic materials" with resistivity $(P)$ nearly $10^{4}$ times greater than metals and with dielectric constant $\left(\varepsilon_{r}\right)$ around $10-15$ and relative permeabilities in the order of 1000 .
(ii) They have magnetic properties similar to those of "ferrous materials".
(iii) They are oxide based compounds having generalcomposition of the form $\mathrm{MeOFC}_{2} \mathrm{O}_{3}$ i.e., a mixture of metal oxide \& Ferric oxide. Here 'MeD' represents divalent metallic oxides such as Mono, Zno, Ceo, Nio (or) a mixture of these.
(iv) These are obtained by firing powdered oxides of materials at $1100^{\circ} \mathrm{C}$ (or) more \& Pressing them. into different shapes.
(v) Ferrites have atoms with large norof spinning electrons, Which result in strong magnetic Properties. The magnetic Properties are due to dipole moment associated with the electron spin.
(vi) Due to high resistivity, they can be used UPto 100 GHz .
(vii) Ferrites have one more Peculiar Property, Which is used at microwave frequencies. The Property is known as "Non-reciprocal Property.

This property states that When two "larly polarised waves, out of which one is rotating in clockwise direction while the of is rotating in anti-clockwise direction. are made to propagate through a ferrite material the material reacts differently to the two rotating fields, there by presenting differe, medium constants to both the waves.i.e. $\varepsilon_{r_{1}}, \mu_{r_{1}}, P_{1}$ for "left-circularly Polarized" wave and $\varepsilon_{r_{2}}, \mu_{r_{2}}, P_{2}$ for "right-circularly Polarized" wave. This Property is used in "Faradays rotation".
(Viii) The specific resistivity of ferrites for Use at, microwave frequency is on the order of $10^{12} \mathrm{ohm}-\mathrm{cm}$.
(ix) TYpical relative's Permittivities of ferrites lie in the range of 5-20.
Applications:-
$\rightarrow$ Because of above Properties, ferrites find. application in a no. of microwave devices "to reduce reflected Power" for "modulation Purposes" \& in "switching circuits:
$\rightarrow$ The ferrites are Popularly used in microwave "isolators", "Circulator" \&"switches
$\rightarrow$ They are used at, RF frequencies in inductors as core material.
$\rightarrow$ They are also used in TV (cathode ray tube) deflection Yokes.
$\rightarrow$ Also used in Phase shifters. Variable attenuate
** Faraday rotation in ferrites:-
$\rightarrow$ Consider a three-dimensional coordinate, system with $X, Y$ and $z$ axes respectively.,


Pig:- Faradaris Rotation
$\rightarrow$ consider an infinite lossless medium. A static magnetic field $B_{0}$ is applied along $Z$-direction A plane TEM wave that is vertically pola-rised along $z$-axis, at $z=0$ is made to Propagate through the ferrite material in the $z$-direction.
$\rightarrow$ The Plane of Polarization of this wave, will rotate with distance and this phenomenon is referred to as Faraday Rotation.
$\rightarrow$ Any linearly Polarized wave can be resolved into two components:
(i) Left circularly Polarized
(ii) Right Circularly Polarized

Hence, it can be regarded as the vector sum of two counter rotating. circularly Polarized waves.
$\rightarrow$ When the wave propagates through the ferrite rod of length "l" which is Placed alongz-axis, the plane of Polarization changes with distance by $\theta_{1}$. When it further travels, the plane of Polarization. changes by $\theta_{2}$ al finally at $z=l$, the plane of polarization changes by $\theta$.
$\rightarrow$ The ferrite material offers different characteristics to these waves, with the result that the phase change for one wave is larger than the other wave. resulting in rotation ' $\theta$ ' of the linearly Polarized wave at $z=l$.
$\rightarrow$ If the direction of propagation is reversed the plane of polarization continues to rotate in the same direction ie, from $z=l$ to $z=0$. The wave will come back at $z=0$, Polarized at an angle of $\underline{z \theta}$. relative to $x$-axis.
$\rightarrow$ The angle of 'rotation ' $\theta$ ' is given' by,

$$
\theta=\frac{l}{2}\left(\beta^{+}-\beta^{-}\right)
$$

Where, $l=$ length of ferrite rod
$\beta^{+}=$Phaseshift of right circularly Polarized wave
$\beta^{-}=$Phase, shift of left circularly Polarized wave.
$\rightarrow$ A two Port ferrite device is shown below Port 1

(a) When a wave is transmitted from Port(1) to Port (2); it undergoes rotation in anticlockwise direction, as shown above.
(b) If the same wave is allowed to Propaga from. Port (2) to Port(1); it will undergo a rotation in the same direction (Anti-clockuss) direction).
$\rightarrow$ The Principle of Faraday Rotation is used in Gyrator circulator and Isolator.
** GYrator:-
$\rightarrow$ Gyrator is a "non-reciprocal ferrite device".
$\rightarrow$ It is a two port device that has a relative phase shift of $180^{\circ}$ in the forward direction and zero phase shift in reverse direction.
$\rightarrow$ When signal is transmitted from Port to Ports it offers a phase shift of $180^{\circ}$ (Tradians) and When the signal is fed to Port z it offers $0^{\circ}$ Phase shift to the signal.
$\rightarrow$ Hence it is also known as "differential Phaseshift device".

Construction:-
$\rightarrow$ Gyrator filter consists of a circular to rectangular waveguide transition both at dominant mode.
$\rightarrow$ A twin circular ferrite rod tappered at both ends is located inside the circular waveguide, surrounded by permanent magnets which generate D.C. magnetic field, for Proper operation of the ferrite.
(Or)
A thin Circular ferrite rod tapered, at both ends is located inside the circular waveguide, supported by polyfoam and surrounded by Permanent magnets. These will generate Dc magnetic field, for proper operation of the ferrite rod.
$\rightarrow$ A rectangular waveguide twisted by $90^{\circ}$ is connected to input.
$\rightarrow$ The ferrite rod is tapered at both ends to reduce attenuation and also for smooth rotation of Polarised wave.
$\rightarrow$ The schematic diagram of gyrator is stiown in the figure below:


OPeration:-
$\rightarrow$ When a wave enters Port (1), its Plane of Polarization, rotates by $90^{\circ}$, because of twist in the waveguide.
$\rightarrow$ It again undergoes Faraday rotation through $90^{\circ}$, because of ferrite rod and the wave coming out of Port (2), will have a Phaseshift of $180^{\circ}$ compared to wave entering Port (1).
$\rightarrow$ When the same wave ( $T E_{10}$ mode signal) enters Port (2) it undergoes Faraday Rotation through $90^{\circ}$, in the anti-clockwise direction.
$\rightarrow$ Because of twist, the wave gets rotated back by $90^{\circ}$, comes out of Port (1), with $0^{\circ}$ Phase shift as shown in the figure.
$\rightarrow$ Hence, the wave from Port (1) to Port (2) undergoes a Phaseshift of $\pi$ radians but the same wave from Port (2) to Port (1) does not change its Phase in gyrator.
Gyrator and Transformer:-
$\rightarrow$ A gyrator is linear, lossless. Passive and memoryless two Port device which is similar to an ideal transformer.
$\rightarrow$ However, a transformer couples the voltage I on Port 1 to the voltage on Port ad current on Port 1 to Current on Port 2 , the gyrator cross couples the voltage to current and current to voltage.
$\rightarrow 2$ gyrators cascaded together gives us a voltage to voltage coupling similar to an ideal transformer.
Gyrator- SMatrix Parameters:-
(i) $S$ is a $2 \times 2$ matrix, since there are two Ports.

$$
\therefore[s]=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]
$$

(ii) If the the Ports are Perfectly matched and there are no reflections, then

$$
S_{11}=S_{22}=0
$$

We know that

$$
[b]=[s][a]
$$

Hence, $b_{2}=s_{21} a_{a 1}$

$$
\begin{aligned}
b_{2} & =-a_{1} \Leftrightarrow S_{21}=-1 \\
\therefore s_{21} & =-1
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \Rightarrow b_{1}=a_{2} \Leftrightarrow s_{12}=1 \\
& \therefore s_{12}=1 \\
& \therefore[s]=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
\end{aligned}
$$

GYrator Applications:-

* A. gyrator can be used to transform load into an inductance. At very low frequencies \& low power, the behaviour of the gyrator can be reproduced by small oP-Amp circuit. It can be done by producing a small induchive element in a small electronic circuit. Before the transistor came into existence. coils of Wire with large inductance might be used in electronic filters. An inductor $c$ an be replaced by smaller assembly Containing a capacitor, $O P$-amp/transistor and resistor. This is used in integrated Circuit technology:
* gyrator as an inductor - the main application of gyrator is to reduce the size and cost of a system by removing the heavy, bulky and expensive inductors. $\qquad$ Scanned with CamScanner
for example. RLC bandpass filter Characteristics can be realized with capacitors, OP-amps, resistors without using inductors Graphic equilization is possible using gyrators. There are two types of gyrators one is Passive gyrator and other is active gyrator.

$$
z
$$

** Isolator:-
$\rightarrow$ An isolator is a "non-reciprocal transmission device" that is used to isolate one component from reflections of other components in the Transmission line.
$\rightarrow$ An ideal isolator completely $a b$ sorbs the Power for Propagation in one direction ad Provides lossless transmission in the opposite direction. Thus, the isolator is usually called "Uniline".
$\rightarrow$ An isolator is a two-Port device, which Provides a very small amount of attenuation. for transmission from Port (1) to Port (2), but Provides maximum attenuation for transmission from Port (2) to Port (1).

$\rightarrow$ The mismatch of generator opP to the load, results in a reflected wave from load. But, these reflected waves should not be allowed to reach the microwave generator, which will cause "amplitude ad frequency instability" of microwave generator.
$\rightarrow$ When isolator is inserted between generator and load, the generator $0 / P$ is coupled to the load with zero at tencation and reflections if any from the load are completely absorbed by the isolator without affecting the generator op. Hence. generator appears to be matched for all loads in the presence of isolator.
Construction:-
$\rightarrow$ Isolators can be constructed in many ways. They can be made by terminating Ports and. Port .4, of a circular (four-Port) with matched loads.
$\rightarrow$ on the other hand, isolators. can be made by inserting a ferrite rod along the axis of a rectangular waveguide. Now Let us see the construction of a "Faraday Rotation isolator".
$\rightarrow$ The construction of Faraday Rotation isolator is similar to gyrator except that an isolator makes use of " $45^{\circ}$ twisted rectangular waveguide " ( insetead of $90^{\circ} \mathrm{RWG}$ ) and " $45^{\circ}$ clock-wise rotation ferrite rod" (instead of $90^{\circ}$ anti-clockwise ferriterod used in gyrator).
$\rightarrow$ "Resistive cards" are placed along the larger dimensions of the waveguide, so as to absorb any wave whose plane of Polarization is Parallel to the plane of resistive card.

$\rightarrow$ The resistive cards will not absorb any wave, whose Plane of Polarization is Perpendicular to its own Plane.
$\rightarrow$ It Provides 20 to $30 d B$ isolation from Port (2) to Port (1).
OPeration:-
$\rightarrow$ A vertically Polarised TE 10 wave Passing from Port (1) through the resistive card is not absorbed.
$\rightarrow$ After coming out of the card, the wave gets shifted 45. because of twist in anti-clock wise direction all then by another $45^{\circ}$ in clock-wise direction because of ferrite rod and comes out of Port (2) with same Polarization as that of port (1) without any attenuation.
$\rightarrow$ But a $T E_{10}$ wave fed from Port (2) gets a Pass from resistive card Placed near Port (2) since the Plane of Polarization of wave is Parallel to the Plane of resistive card.
$\rightarrow$ Then the wave gets rotated by $45^{\circ}$ due to faraday-rotation in clock-wise direction and further gets rotated by $45^{\circ}$ in clockwise direction due to twist in the waveguide.
$\rightarrow$ Now the Plane of Polarization of wave is Parallel with that of resistive card and hence the wave will be completely absorbed by the resistive card and therefore the op at Port (i) will be zero. The Power in the card gets dissipated as heat.
isolator- SMatrix Parameters:-
(i) $S$ is a $2 \times 2$ matrix, Since there are two Ports.

$$
\text { ie., }[S]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]
$$

(ii) If the Ports are Perfectly matched ad there are no reflections, then

$$
s_{11}=s_{22}=0
$$

We know that

$$
[b]=[s][a]
$$

Hence, $\quad b_{2}=s_{21} a_{1}$

$$
\begin{aligned}
& \Rightarrow b_{2}=a_{1} \Leftrightarrow s_{21}=1 \\
& \therefore s_{21}=1
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { similarly, } & b_{1}=s_{12} a_{2} \\
\Rightarrow & b_{1}=0 \Leftrightarrow s_{12}=0 \\
\therefore & s_{12}=0
\end{array}\right]=\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

Isolator Applications:-
$\rightarrow$ Isolators are generally used to improve the frequency stability of microwave generators, in which the reflection from the load affects the generating frequency. In such cases, the isolator placed between the generator and load Prevents the reflected power from the unmatched load from returning to the generator. As a result, the isolator maintains the frequency Stability of the generator.
$\rightarrow$ The applications of isolators involve high voltage devices such as transformers.
$\rightarrow$ These are protected with a locking system on the external (or, with a lock to stop accidental usage.
$\rightarrow$ Isolator in substation:- When a fault occurs in a substation, then the isolator cuts out a portion of substation.
This is all about an overview of the electrical isolator. The characteristics of this isolator include it is an offload device operated manually, De-energize the Circuit, entire
isolation for secure maintanance, includes a Padlock, etc...
** Circulator:-
$\rightarrow$ A circulator is a "multi =Port ferrite device.
$\rightarrow$ There is no restriction on number of Ports. "Four Port" microwave Circulator is most common.
$\rightarrow$ It has a "Peculiar Property" that each terminal is connected only to the next clock wise terminal ie., Port (1) is connected to Port (2) only and nowt to Port (3) \&Port(4). similarly, Port (2) is connected to Port (3) but not to Port (4) \& Port (1), and so on.
$\rightarrow$ Wave can flow from one Port to another - Port in one direction.
$\rightarrow$ Circulators are useful in "Parametric amplifiers", "tunnel diode amplifiers and as "duplexer in radars".
construction:-
$\rightarrow$ The schematic diagram of a circulator is shown in the below figure.
$\rightarrow$ The arrows within the circulator signify the direction of the magnetic field when the signal is applied to one of the ports of these devices.
$\rightarrow$ If a signal is applied at Port-A, al Port B if is, well o suited then the applied signal will $i$ i...exit: from Port $B$ with Judi loss:.
$\rightarrow$ IT there is a difference at Port-B, the signal can be reproduced from Port $-B$, that will be directed toward Port c.


OPeration:-
$\rightarrow$ The wave entering Port (1) is $T E_{10}$ mode and is Converted to TE 11 mode because of rectangular to circular transition.
$\rightarrow$ This waves Passes Port (3),
 4-Port circa ats. symbolic veresert.- Unaffected since the electric field is not significantly cut and is rotated through $45^{\circ}$ in clockwise due to ferrite rod, Passes Port (4), unaffected (for the same reason as it Passes Port (3)). Finally, the wave emerges out of Port (2).
$\rightarrow$ The wave entering Port (2) will have plane of Polarization already tilted $45^{\circ}$ withrespect to Port (1). This wave Passes Port (4), Unaffected because the electric field is not significant, cut. This wave gets rotated another $45^{\circ}$, due to ferrite rod in clockwise direction.
$\rightarrow$ This wave whose plane of Polarization tilted by $90^{\circ}$, finds Port (3) suitably alinged aid emerges out of it.
$\longrightarrow$ similarly, Port (3) is coupled to Port (4) ad Port (4) is coupled to Port(1).

Circulator S Matrix Parameters:-
consider, a 3-Port circulator
(i) $S$ is a $3 \times 3$ matrix, since there are 3 Ports

$$
\text { i.e. }[s]=\left[\begin{array}{lll}
S_{11} & s_{12} & S_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & S_{32} & s_{33}
\end{array}\right] \text {. }
$$

(ii) If all the 3 Ports are Perfectly matched and if there are no reflections from the 3 Ports, then

$$
s_{11}=s_{22}=s_{33}=0
$$

(iii) When ils is given to Port (2), it will not come to Port (3).

$$
\text { i.e, } \quad s_{12}=0
$$

When ip is given to Port (3), it will not come to port (2).

$$
\text { i.e., } \quad s_{23}=0
$$

Similarly, when, ip is given, to Port (1), it will not come to Port (3).
ice., $\quad S_{131}=0$

$$
\because \quad \begin{aligned}
& S_{12}=0 \\
& S_{23}=0 \\
& S_{131}=0
\end{aligned}
$$

(iv) When il is given

$$
\text { i.e., } S_{21}=1
$$

When ip is given to Port (2), it will flow to Port (3).

$$
\text { i.e., } S_{32}=1
$$

when ip is given to Port (3), it will flow to Port (1).

$$
\begin{gathered}
\text { i.e. } s_{13}=1 \\
\therefore \quad s_{21}=s_{232}=s_{13}=1 \\
\therefore[s]=\left[\begin{array}{lll}
s_{11} & s_{12} & s_{13} \\
s_{21} & s_{22} & s_{23} \\
s_{31} & s_{32} & s_{33}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Similarly, for a 4-Port Circulator, S-Matrix is given by,

$$
\begin{aligned}
& S=\left[\begin{array}{llll}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
s_{31} & s_{32} & s_{33} & s_{34} \\
s_{41} & s_{42} & s_{43} & s_{44}
\end{array}\right]=\left[\begin{array}{llll}
0 & s_{12} & s_{13} & s_{14} \\
s_{21} & 0 & s_{23} & s_{24} \\
s_{31} & s_{32} & 0 & s_{34} \\
s_{41} & s_{42} & s_{43} & 0
\end{array}\right] \\
& \Rightarrow S=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],
\end{aligned}
$$

APplications of circulator:-

* A circulator can be used as a duplexer for radar antenna system as shown below.

Radar

$$
T x
$$

Port (1)

Radar RX
Port (3)
-mn- (matched
Port (4) Termination)
The transmitter while transmitting, is connected to the antenna, when antenna receives a signal it directs it to the Receiver. The same antenna can be used for Transmission \& RecePtion Purpose. Hence, the Circulator Performs the function of a "Duplexer".

* A 3-Port Circulator can be used in "tunnel diode" (or) "Parametric amplifier".

* Circulator can be used as low Power devices as they can handle Low Power only.
* Isolator
* Reflection Amplifier
* Radar systems
* Amplifier systems
* Antenna transmitting (or receiving

Circulator characteristics:-
The characteristics of Circulator include the following.
$\rightarrow$ Insertion loss is $<1 d B$
$\rightarrow$ Isolation range is approximately from 30 dB to 40 dB .
$\rightarrow$ VSWR (voltage Standing wave Ratio) is $<1.5$
Thus, this is all about circulators. The selfcion of circulator can be done using features like frequency, isolation, Power \& insertion loss.
Difference between isolator \& circulator:-
$\rightarrow$ RF Circulator is a 3-Port device and isolator is a 2-port device.
$\rightarrow$ Both allow signal to flow in any one direaction and Prevents signal going into the other direction as Per design.
$\rightarrow$ RF circulator being having 3 ports, there are two main types clockwise and anti-clock
$\rightarrow$ wise.
$\rightarrow$ If. Ports are say $P_{1}, P_{2}$ and $P_{3}$ then isolator can Pass signal from $P_{1}$ to $P_{2}, P_{2}$ to $P_{3}$ and from $P_{3}$ to $P_{1}$ and not in other direction, if designed so otherwise it will Pass signal from $P_{3}$ to $P_{2}$ and $P_{2}$ to $P_{1}$ and from $P_{1}$ to $P_{3}$.
$\rightarrow$ The uni-directional transmission feature Can be used to isolate the effects of load changes on the signal source.

Wave guide Apertures:-
$\rightarrow$ Techniques used for coupling microwave energy include inductive loops, capacitive Probes, etc...
$\rightarrow$ The most common method is to use Apertures in the Waveguide walls, usually in the form of Circular holes (or) thin slots.
$\rightarrow$ The theory of radiation through small apertures was developed by Bethe

both
$\bar{\epsilon} \& \bar{H}$

component
figla:- Padiatiry
fig:- Radiating
$\rightarrow$ Assuming TE 10 mode of Propagation, the ones in fig (a), radiate a portion of wave energy \& therefore find use in Antenna arrays and directional couplers.
$\rightarrow$ The figures $(c) \&(d)$ shows field patterns for a circular hole centrally located in the broad wall of a waveguide (aperture 1)
$\rightarrow$ The, electric field " $E_{y}$ " in the main wavegu? extends into the Auxiliary/ secondary wave guide in fig (c), Whereas " $H_{x}$ " couples into secondary waveguide in fig (d).

Scanned with CamScanner

fig:- Examples of electric \& magnetic coupling through a Waveguide Aperture
$\rightarrow$ The Coupling through Circular hole in harrow wall (aperture 2) is magnetic, since only ' H ' component exists at that aperture.
$\rightarrow$ For the case of thin slots, the coupling is essentially magnetic. Only the magnetic $d$ field component Parallel to long dimension of the slot, couples through the aperture. (Apertures $3,4,5$ ).
$\rightarrow$ Aperture (3) radiates energy, since the longitudinal conduction current $\left(J_{2}\right)$ is interrupted thus creating a displacement current which Produces a coupled magnetic field. ( $H_{x}$ in this case)
$\rightarrow$ Apertures (4) \& (5) interrupt transverse, conduction currents ( $J_{x}$ and $J_{y}$ respectively), there by Producing magnetic coupling via " $\mathrm{H}_{z}$ "component
$\rightarrow$ The thin slots shown in $f_{i g}(b)$, are nonradiating apertures since they donot interrupt any conduction currents.
$\rightarrow$ If the thin slot on the broader wall is offset from the center line, it becomes a radiating slot.
** Waveguide discontinuities - Waveguide Irises. Tuning screws\& Posts. Matched loads
$\rightarrow$ Any interruption in the Uniformity of a transmission line leads to impedance mismatch and is known as "impedance discontinuity" (or) "Waveguide discontinuities"
$\rightarrow$ Due to mismatch of load, reflections will occur.
$\rightarrow$ To minimize these reflections, "lumped elements" (or) "stubs" are used
$\rightarrow$ In a Waveguide system, when there is a mismatch, reflections will occur. Any Susceptance appearing across the guide causing mismatch, needs to be cancelled. out by introducing another suisceptance of same magnitude but of opposite value.
$\rightarrow$ The waveguide Irises are used for this PurPose.
Waveguide Irises:-
$\rightarrow$ Fixed (or) adjustable projections from the walls of waveguides are used for impedance matching. Purposes, and these are known as "windows" (or) "Irises".
$\rightarrow$ An Iris is a metal Plate that contains an opening through which the waves may Pass.
$\rightarrow$ It is located in the transverse plane of either a magnetic field (or an electric field.
$\rightarrow$ Irises are classified according to the sign of the imaginary part of the imperdance.
$\rightarrow$ If the reactance of the impedance is Positive (or) if the susceptance of the admittance is negative, we have an inductive Iris. If the reactance is negative (or) if the susceptance is Positive. we have a CaPacitive Iris.
Inductive Iris:-

- Usually, inductive irises are used as Coupling networks between half-wavelength Cavities in rectangular waveguides.
- Generally, an inductive iris is placed, Where either magnetic field is strong (or) electric field is weak.
$\odot$ The plane of Polarization of the electricfield becomes Parallel to the plane of inductive iris.
$\bigcirc$ This Causes a current flow, which setsup a magnetic field. Then the energy is stored in the magnetic field.
O. Hence, inductance Will increase at that Point of the Waveguide.

Capacitive Iris:-
$\odot$ A capacitive iris is also known as capacitive window. It extends from the top and bottom walls into the waveguid
$\odot$ The capacitive iris has to be placed in strong electric field.

- This capacitive iris creates the effect of capacitive susceptance which is in Parallel to that point of Waveguide Where the electric field is strong.
Parallel resonant Iris:-
- If the inductive and CaPacitive irises are combined suitably (correctly shaped and Positioned), the inductive and capacitive reactances introduced will be equal al the iris will become a parallel resonant circuit.
© For the dominant mode, the iris Presents a "high" impedance" and the "shuntin geffen of this mode will be negligible.
O other modes are completely attenuated and the resonant iris acts as a "Band-pasis filter" to suppress unwanted modes.
(-) A series resonant Circuit that is Supported by a non-metallic material and is transparent. to, the flow of microwave energy.


Tuning screws and Posts:-
$\rightarrow$ Posts and screws made from conductive material can be used for impedanceChanging devices in Waveguides.
$\rightarrow A$ Post (or) screw $C$ an also serve as a reactive element. The only significant difference between posts and screws is that "Posts are fixed" and "screws are adjustable.
$\rightarrow$ A Post (or screw) that only Penetrates Partially into the waveguide acts as a shunt capacitive reactance.
$\rightarrow$ when a post extends completely through the waveguide, making contact with the top and bottom, walls, it acts as an inductive reactance. The screw acts as an LC-tuned circuit in such cases.

Screws:-
(-) A screw is generally inserted into the top (or) bottom walls of the waveguide, parallel to the electric-field lines.

- It can give a variable amount of suscep. trance depending on the depth of Penetration
(-) A screw with an insertion distance (Screw depth) less than $\lambda_{4}$ produces Capacitive Susceptance.
(). When the distance is greater than $\lambda / 4$, it Produces inductive susceptance as shown in the figure below:

$\rightarrow$ The adjustable Waveguide screw is shown in the figure below. The capacitive setting is show in the first figure and the inductive setting is shown in the second figure.

de
fig:- Capacitive setting fig:-inductive setting
fig. Adjustable Waveguide components
$\rightarrow$ The most direct method of impedance matching with a matched screw involves Using a single screw that is adjustable in both length and position along the 1 Waveguide. However, it requires a slot in the waveguide.
$\rightarrow$ An alternative arrangement is to use double (or) triple screws units with a spacing of $\lambda / 8$ (or) $\lambda / 4$.
$\rightarrow$ A combination of two screws which are $\frac{\lambda g}{4}$ apart, can be used to match a waveguide to its load similar to use of two fixed stubs in a Transmission line.
$\rightarrow$ A very effective waveguide matches can be realized when two tuning screws are place l in close Proximity separated by $\frac{3 \lambda_{9}}{8}$ as shown in the figure:


Posts:-
$\rightarrow$ A cylindrical post is introduced into the broader side of the Waveguide; it Produces a similar effect as an iris in Providing lumped Capacitivelinductive reactance at that Point.
$\rightarrow$ When a metalpost extends completely across. the Waveguide parallel to an electric field, it adds an inductive susceptance that is Parallel to the waveguide.
$\rightarrow$ A post extending across the waveguide at right angles to the electric field Produces an effective capacitive susceptance that is in: shunt with the waveguide at the Position of the Post:-
$\rightarrow$ The advantage of such Posts over irises is the flexibility they Provide which results in ease of matching.


$\rightarrow$ If the Post extends by $<\frac{\lambda_{g}}{4}$, into the waveguits it behaves CaPacitively and this' susceptance increases with depth of Penetration.
$\rightarrow$ If the depth of Post is equal to $\frac{\lambda_{g}}{4}$, it acts as a series-resonant Circuit.
$\rightarrow$ If the depth of Post is $\frac{>\lambda_{g}}{4}$, it behaves inductively and this inductive susceptance. decreases as depth of post increases.
$\rightarrow$ when the post is completely extended, the 1 Post becomes inductive.
$\rightarrow$ If the Post is made thicker, the effective ' $Q$ ' will be lowered, the Post acts as a Band-Pass filter similar to an iris.
Matched Loads:-
$\rightarrow$ The most commonly used waveguide terminations are the matched loads. Whenever the load impedance and characteristic impedance of the transmission line are not matched/equal. reflections exist.
$\rightarrow$ These reflections. would cause "frequency instability" to the source.
$\rightarrow$ Matched Loads are used for minimizing the
A reflections by placing a material in the waveguide Parallel to the electric field to absorb the incident Power completely.
$\rightarrow$ one of the methods involved in the matched load is to place; a resistive card in the waveguide Parallel to the electric field. The
front Portion of the card is tapered to avoid discontinuity of the signal and it almost absorbs the incident field.
*** Waveguide Attenuators:-
$\rightarrow$ An attenuator is a Passive device that is used to reduce the strength (or) amplitude of a signal.
$\rightarrow$ At microwave frequencies, the attenuators were not only meant to do this, but also meant to maintain the characteristic impedance $\left(z_{0}\right)$ of the system.
$\rightarrow$ If the $z_{0}$ of the transmission line is not maintained, the attenuator would be seen as impedance discontinuity, which causes reflections.
$\rightarrow$ Usually, a microwave attenuation controls the flow of microwave power by absorbing it.
$\rightarrow$ Attenuation in $d B$ of a device is ten times the logarithmic ratio of Power flowing into the device $\left(P_{i}\right)$ to the power flowing out of the device ( $P_{0}$ ) when both the input and output circuits are matched Attenuation in $d B=\operatorname{rolog}_{10}^{\left(p_{i} \mid p_{0}\right)}$
Principle of Waveguide Attenuator:-
In a microwave transmission system, the microwave power transferring from one. Section to another section can be controlled by a device known a's microwave,

Attenuator". These Attenuators operate on the Principle of interfering with electric (orrmagnetic (or) both the fields. A resistive material placed' in Parallel to electric field lines, will induce a current in the material. Which will result ' in $I^{2} R$ Loss. Thus, attenuation occurs by heating of the resistive element.

Attenuators may be of three types:-
(1) Fixed
(2) Mechanically (or) electronically variable.
(3) Series of fixed steps
(1) Fixed Attenuators:-
$\rightarrow$ Fixed Attenuators are used where a fixed amount of attenuation is needed. They are " also called "Pads".
$\rightarrow$ In this type of attenuator, tapering is Provided by placing a short section of a Waveguide with an attached tapered plug of absorbing material at the end.
$\rightarrow$ The pupose of tapering is for the gradual transition of microwave power, from the waveguide medium to the absorbing medium
$\rightarrow$ Because of the absorbing medium, reflections at the media interface will be minimized.
$\rightarrow$ The Pad is placed in such a way that the plane is parallel to the electricficld. For this, two thin metal rods are used.
$\rightarrow$ The figure below represents a Fixed Attenuator

Lossy material. ir

$\rightarrow$ The amount of attenuation provided by the fixed attenuator depends on * Strength of the dielectric material

* the location and area of the Pad
* type of material used for the Pad Within waveguide
* Frequency of operation
(2). Variable Attenuators:-
$\rightarrow$ For Providing continuous (or) Step-wise attenuation, variable attenuators are used.
$\rightarrow$ The Provided attenuation depends on the insertion depth of the absorbing plate into the Waveguide.
$\rightarrow$ The maximum attenuation will be achieved When the Pad extends totally into the Waveguide.
$\rightarrow$ This type of variable attenuation is provided by knoblgiear assembly, which can be Properly calibrated.
$\rightarrow$ The power transmitted to the load can be varied: manually (or) electronically from nearly the foll power of the source to as little, as a millionth of a Percent of the source power depending on the frequency,
of operation. The types of variable attenuators are,

1. Flap (or) resistive-card type attenuators
2. Slide vane attenuators
3. Rotary vane attenuators
(1). Resistive card (flap type) attenuator:-

- Mechanically. Variable attenuators are stepwise Variable attenuators Examples are flaptype, slide vane type attenuators.
- In contrast, electronically variable attenuators are continuously variable attenuators.

O They are used for Various applications like requiring automatic signal leveling aid control, amplitude modulation, remote signal control and so on.

-     - The resistive card attenuator may be either fixed (or) variable.
Fixed Resistive card:-
- In fixed version, the card is bonded to the Waveguide as shown in the figure.
$\odot$ The card is tapered at both ends inorder to maintain a Low $i / P$ and opP standing wave Ratio( $S \omega R$ ) over useful microwave band.
$\rho$ The maximum attenuation is achieved card by, having the card Parallel to electricfield and at the centre of the waveguide where the electric field is maximum.
10 The conductivity and size of the $C$ ard are adjusted by trail \&error, to obtain desired
attenuation value
- In high power versions, ceramic type absorb, materials are used instead of resistive card.

Variable Resistive Card:-
$\odot$ A variable version of, this attenuation is known as Flap attenuation as shown in the figure.
-) The card enters the waveguide through the non-radiating slot in broad wall, and there by. interscepting and absorbing a Portion of the $T E_{10}$ wave.
O The hinge arrangement allows the card Penetration and hence attenuation in the range of $(0-30) d B$ can be achieved with longitudinal slot.
O None of the $T E_{10}$ wave is radiated through the slot.
Disadvantages:-
The attenuation is frequency attenuation sensitive, which makes it inconvinient to use as a "Calibrated attenuator".
(2) Slide vane (or) adjustable disk attenuator :-

- In this attenuator the vane is Positioned at the center of the waveguide and can be moved laterally from the center, where it Provides maximum attenuation to the edges.
- However, the attenuation is reduced at the
edges, as the electric field lines are always concentrated at the center of the Waveguide.
(1) The vance is tapered at both ends for matching the attenuator with the waveguide.
(1) An adequate match is obtained, it the taper' length is made equal to $\lambda / 2$.
() The biggest disadvantage with these attenuators is that their attenuation is frequency sensitive and also the phase of the output signal is a function of attenuation
- The slide vane (or) adjustable disk attenuator is shown in the figure below.

(3) Rotary Vane Attenuators:-
$\odot$ The most satisfactory Precision attenuator is the rotary vane attenuator.
- The structure of this attenuator is shown in the figure below.
O It consists of two rectangular to circular waveguide tapered transitions, along with an intermediate section of a Circular waveguide that is free to rotate. All the three sections contain thin resistive cards.

4. The input signal Passes the first card
i: with a negligible attenuation because the electric field. of the TE 10 wave mode is
is Perpendicular to the card.
(-) Then, the wave enters through a transit to the circular waveguide
(-) The attenuation is adjusted by rotating the circular waveguide section and the resistive card within it.

- The field of the $T E_{11}$ wave mode can be divided into two components: one Perpendicular to the card and the other Parallel to it.
() The latter component is absorbed by the card; the former component enters the output of the waveguide, in which again its component Parallel to the resistive card is absorbed.

fig:- Rotary vane attenuator
- The plates are usually thin with $\varepsilon_{r}>1$, $\mu_{r}=1$ and conductivity $(\sigma)$ of a finite $\therefore$ non-zero value.
© The. Plates attenuates the wave that is travelling, and the amount of attenuation is dependent on the properties of the material from which the plate is made, Scanned with CamScanner
the dimensions of the slab and the angle between the electric field at the input and the plane of the resistive card in the circular section The attenuation in decibles is given by, Attenuation in $d B=-40 \log (\cos \theta) d B$ ]
Where $\theta$ is the angle between the electric field at the input and the plane of the resistive card in the circular section. Hence, the attenuation is controlled by the rotation of the center section. Minimum attenuation at $\theta=0^{\circ}$ and maximum attenuation at $\theta=90^{\circ}$. The attenuation Provided by this device depends only on the rotation angle ' $\theta$ ' but not on the frequency. This device is very accurate, and is, hence, being used as a calibration standard y Its accuracy is limited only by imperfect matching and by misalignment of the resistive. cards.
**
Waveguide Phaseshifters :-
$\rightarrow$ A phase shifter is a two-Port component that Provides a fixed (or) Variable change in the phase of the Wave.
$\rightarrow$ An ideal phase shifter is lossless and matched. It only shifts the Phase of the output wave.
$\rightarrow$ for example, phase shifters are used in phased antenna arrays.
$\rightarrow$ Electrically controlled Phase shifters are much faster than mechanical phase shifters. They are often based on "PIN diodes" (or) "FET".
$\rightarrow$ The phase delay due to a Waveguide section of length ' $l$ ' is given by,
$\beta l=\frac{2 \pi}{\lambda_{g}} \cdot l$ Where $\lambda_{g}=$ Guided Wavelength
$\rightarrow$ The phase delay can be adjusted by varying guided wavelength ( $\lambda_{g}$ ). This can be "accomplished by varying either. "E." (or) "guide width" (a) as shown below

$$
\begin{aligned}
& \lambda_{g}=\frac{\lambda}{\sqrt{1-\left(f_{c} / f\right)^{2}}} \\
& \Rightarrow x_{g}=\frac{c}{f \sqrt{1-\left(f_{c} / f\right)^{2}}} \\
& (\because c=f \lambda) \\
& \Rightarrow \quad \lambda_{g}=\frac{c}{f \sqrt{\varepsilon_{r}} \sqrt{1-\left(f_{c} / f\right)^{2}}} \\
& \therefore \lambda_{g}=\frac{c}{f \sqrt{\varepsilon_{r}} \sqrt{1-(f c / f)^{2}}} \\
& \begin{array}{rcc}
\because c & c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} & \text { for } \\
\begin{array}{c}
\text { free } \\
\text { Space }
\end{array} \\
C=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0} \varepsilon_{r}}} & \begin{array}{c}
\text { for ard } \\
\text { medium } \\
\text { oltrimen } \\
\text { frecspace }
\end{array}
\end{array}
\end{aligned}
$$

if $\sqrt{\varepsilon_{r}}$ and $a \uparrow, \lambda g \downarrow$ aid there fore $\beta \uparrow$.


Fixed Phase shifters:-
O Fixed phase shifters are usually extra transmission line sections of a certain length that are meant to shift the Phase with regard to the reference line.

- Therefore depending on the bias current, the wave travelling along the transmission line will have an additional travelling path
O Since these Phase shifters are binary switches only discrete Phase shifts are Possible.
variable Phase shifters:-
- The variable: phase shifters use mechanical (or) electronic means to achieve a dynamic range of phase difference.
- The mechanically tuned phase shifter usually ${ }^{\text {d }}$ consists of variable short-circuits that are used with hybrids, or in the case of Waveguide components, a dielectric slab with. a variable Position in the guide.
- Step motors move the slab across the guide (from its center toward the outer Walls), there by accomplishing, a maximum (or) minimum phase shift.
O Another method for obtaining the desired mechanically tuned phase shifter involves combining variable short circuits and hybrid circuits.
0 The movement of the short-circuit along a transmission line results in the phaseshift, thus making it appear shorter (or) longer.

Dielectric Phase Shifters:-
O The variable type of dielectric phase shifters employs a low-loss dielectric insertion in the air-filled guide at a Point of the maximum electric field to increase its effective dielectric constant.
(). This causes the guide wavelength ( $\lambda_{g}$ ) to decrease.
() Thus, the insertion of the dielectric increase the phase shift in the wave, Passing, through the fixed length of the waveguide section.
-( Tapering of the dielectric slab has resorted inorder to reduce the reflections.

$$
\begin{aligned}
& \text { fig:- Dielectric tue } \\
& \text { Variable then stafition }
\end{aligned}
$$



OPeration:-
$\rightarrow$ If consists of three circular waveguide sections, two fixed and one rotatable. Two fixed sections are quarter wave plate, while rotatable one is half-wave plate.
$\rightarrow$ The vector Phasor $E L 0^{\circ}$, rePresents the vertically polarized i/P wave. It may be decomposed into two components, Parallel \& Perpendicular to the dielectric slab of the isp Quarterwave Plate. The value of each component is $\frac{E}{\sqrt{2}} 0^{\circ}$.
$\rightarrow$ The effect of ils quarter wave plate is to delay "the $L_{\text {er }}$ component by " $\beta l$ " and /hel component by " $\beta l+\pi / 2$ ", which results in a clockwise circularly polarized wave at the ils of rotatable section.
$\rightarrow$ with the length of half plate is equal to "Il", the Lev and $\|$ el components are further delayed by " $2 \beta l$ " and " $2 \beta l+\pi$ " respectively as shown in the fig (b).
$\rightarrow$ The op water wave plate delays these components by an additional " $\beta l$ " and $\beta l+\pi / 2$ " respectively. As a result the $O / P$ components are " $E\left(-4 \beta l-2 \theta_{m}\right.$ " ald "E $\frac{E}{\sqrt{2}}\left\langle-4 \beta l-2 \pi-2 \theta_{m}\right.$ " with these two components are in phase, the vector addition results in a vertically polarized $0 / P$ wave of value $E L-4 \beta l-2 \theta_{m}$.
$\rightarrow$ Because of accuracy, the rotary phase shifters are used as a calibration standard in microwave laboratories.

$$
z
$$

** Waveguide Joints:-
(1) Permanent Joints:- These joints are made by company itself, it doesnot need any maintainance.
(2) Semi-Permanent Joints:-
(i) Bolted Joints:- Gascut reduces the moisture (or) air. Here two rectangular waveguides are connected by using bolts:

(ii) $\lambda \mathrm{g} / 4$ Joint:- Here, we use $\lambda \mathrm{g} / 4$, because it acts as inverter.
(iii) Chock Joints:-
(iv) Rotatable Joints:-

Waveguide Bends:-

* Waveguide is normally rigid, except for flexible Waveguide, and therefore it is often necessary to direct the waveguide in a Particular direction.
$\rightarrow$ using Waveguide bends, and twists it is Possible to arrange the waveguide into the positions required.
$\rightarrow$ when using waveguide bends and waveguide twists, it is necessary to ensure the bending and twisting is accomplished in the correct manner otherwise the electric and magnetic fields will be unduly distorted and the signal will not propagate in the manner required causing loss \&reflections.
$\rightarrow$ Accordingly, waveguide bend and waveguide twist sections are manufactured specifically to allow the waveguide direction to be alerted without unduly destroying the field Patterns and introducing loss.
TYPes of Waveguide bend:-
$\rightarrow$ There are several ways in which waveguide bends can be accomplished. They may be used according to the applications and the requirements.
-) Waveguide $E$ bend
© Waveguide $H$ bend
- Waveguide sharp $E$ bend.
- Waveguide sharp $H$ bend
$\rightarrow$ Each type of bend is achieved in a way that enables the signal to propagate correctly and with the minimum of disruption to the fields and hence to the overall signal.
$\rightarrow$ Ideally the waveguide should be bent very
gradually, but this is normally not viable and therefore specific waveguide bends are used.
$\rightarrow$ Most proprietary waveguide bends are common angles $-90^{\circ}$ waveguide bends are the most common by far.
Waveguide $E$ bend:-
$\rightarrow$ This form of waveguide bend is called an $E$ bend because it distorts (or) changes the electric field to enable the waveguide to be bent in the required direction.
$\rightarrow$ To prevent reflections, this waveguide bend must have a radius greater than two wavelengths.
Waveguide $H$ bend:-
$\rightarrow$ This form of waveguide bend is very simile to the $E$ bend, except
that it distorts the
$H$ or magnetic field.
It creates the bend


Mig- Waveiquide bend

Waveguide sharp E bend:-
$\rightarrow$ In some circumstances, a much shorter(or) sharper bend may be required.
$\rightarrow$ This can be accomplished in a slightly different manner.
$\rightarrow$ The techniques is to use a $45^{\circ}$ bend in the waveguide. Effectively, the signal is reflected, and using a $45^{\circ}$ surface, the reflections occur in such a way that the fields are left undisturbed, although the Phase is inverted and in some applications this may need accounting for (or) correcting.
fig:- waveguide shape $f$ beria
Waveguide sharp $H$ bend :-
$\rightarrow$ This form of Waveguide bend is the same as the sharp $E$ field bend except that the waveguide bend effects the $H$-field rather than the E-field.
"Quarter of

- Wavers: ?"

ク゚a:- horevice snap H bro
Waveguide twists:-
$\rightarrow$ There are also instances where the waveguide may require twisting. This too can be accomplished.
$\rightarrow$ A gradual twist in the waveguide is used to turn the Polarisation of the waveguide and hence the waveform.
$\rightarrow$ Inorder to Prevent undue distortion on the waveform, a $90^{\circ}$ twist should be undertaken

Over a distance greater than two wave? lengths of the frequency in use.
$\rightarrow$ If a complete inversion is required, for example, for phasing requirements, the overall inversion (or) $180^{\circ}$ twist should be undertaken over a four wavelength distanced
$\rightarrow$ Waveguide bends and waveguide twists are very useful items to have when building a waveguide system.
$\rightarrow$ Using waveguide $E$ bends and waveguide $H$ bends and their sharp bend counterparts allows the waveguide to be turned throof the rewired angle to meet the mechanical constraints of the overall waveguide system
$\rightarrow$ Waveguide twists are also useful in many applications to ensure the Polaristation is correct.

Tranisfored electron devices (TEDDy):-
TRDly are two terminal semiconductor devices which are used to generate or amplify microwave signals. These are bork devices having no junctions or gates as compared to lew torensistors which operate with either Junction or gates. Tells are fabricate from Compound semi conductor such as Gats, In or with CITe as against the fundamental semiconductor matoral $G e$ or si.

Trasistors operate with "warm" electrons whose energy is not much greater than thermal energy ( 0.026 ev at room temperature) of electrons in the semi conductor. But TRuly prate with "hot" electrums whose energy is very much greater than the thermal energy.

TRDly have the -we resistance property. (ie) the real port of their impedance is -ve vera range of feopena. In a tue resistance, the eworent through the resistance and voltage across it are in phase loot in 9 -ve resistance the current and voltage are out of phase by $180^{\circ}$. The voltage drop across a -ve resistance is -be and pow or of ( $-I^{2} R$ ) is generated by the power supply associated with -ve resistance. (ie) tue resistance absorb power and we resistance generate power. so TEDDy used as oscillators.

Ridley - waticins-Hilsom (Rwit) Theory :-
The fundamental concent of the RWH theory is the differential -be resistance developed in a book solid state IIII-I compound by toranstoring electrons from high mobility energy band to low mobility energy band, whin is explained of follows. veffoential -ve resistance:-

They are two modes of tee resistance devices.

1. voltage controlled mode
2. current controlled mode.

In voltage controlled mode if an electric field $E_{0}$ is applied to the sample, the eworont density ' $T_{0}$ ' is generated. As the applied field is increased to $E_{2}$, the current density is decoresed to ' $T_{2}$ '. when the held is decreased to $E_{1}$, the eworent density is increased to $J_{1}$. These phenomena of the voltage controlled -ve resistance shown in fig (a). simillerly for the current controlled mode, the -ve resistance profile is shown in fight).



Fig (a): voltage cuntorlled mode FH(b) 'current comforolled mode

Two valley model theory of Root The ry:-
The basic mechamism to achieve -ve resistance in the $n$-type Gaits device is the tramifor of electrons from lower conduction band (L-valley) to upper conduction band (U-valley), shown in by bellow.


Table bellow shows dada for two valleys in the n-type Gats dernce.

| valley | effechue mass <br> me | Mobility | Reneyy Separation |
| :--- | :---: | :---: | :---: |
| Lowervally | mel $=0.068$ | $\mu=8000 \mathrm{~cm} / \mathrm{vs}$ | $\Delta E=0.36 \mathrm{eo}$ |
| uppervalles | $m_{e v}=1.2$ | $\mu=180 \mathrm{~cm} / \mathrm{v}$ | $\Delta E=0.36 \mathrm{ev}$ |

when the applied electric field is lower than the electric bed of the low valley $(E<E l)$, no electrons will toronfor to the upper valley. Then the conductivity and ' $J$ ' of n-type Gains is

$$
\begin{align*}
& \sigma=e n_{l} u_{l} \\
& J=\sigma E=e n_{l} u_{l} E \tag{1}
\end{align*}
$$

when applied field is higher than that of the lower valley and lower than that of upper valley $\left(E_{l}<E<E_{I l}\right)$, electrons will begin to forester to the upper valley. Then the cunductivity and ' $J$ ' is given by

$$
\begin{align*}
& \sigma=e\left[\mu_{l} n_{l}+\mu_{\mu} n_{0}\right] \\
& J=\sigma E=e\left[\mu_{l} n_{l}+\mu_{0} n_{0}\right] F_{E} \tag{2}
\end{align*}
$$

Bot when applied field is higher than that of the upper valley $\left[E>\Sigma_{U}\right]$, all the electrons will tramper to the upper valley, then conductivity and ' $T$ ' is given by

$$
\begin{align*}
& \sigma=e v_{\mu} n_{u} \\
& T=\sigma E=e \mu_{U} n_{U} E \tag{3}
\end{align*}
$$

The teamster of electrons for different electric fred shown bellow.




Fin bellow shows the ewrent versos field characteristics of a two valley semiconductor.


The curont density informs of drift velocity is gloom by

$$
\begin{aligned}
& T=\operatorname{en} v_{d} \\
& \text { where } V_{d}=r E
\end{aligned}
$$

Fig bellow shows the drift velocity versos electric bield of a two valley semiconductor.

differentiate above expression with respect to $E$, we get

$$
\frac{\partial \tau}{\partial E_{z}}=9 n \frac{\partial u_{d}}{\partial E_{z}}
$$

The condition for te resistance region
is $\frac{\partial T}{\partial E_{2}}<0$ (ie) $\frac{\partial \theta d}{\partial R_{2}}=\operatorname{len}<0$, where un is - be mobility
conditions to apply $R$ wit theory to a semi conductor:-
The band storucture of semiconductor must satisfy three conditions in ordo to we resistance.

1. The separation energy b/w , the bottom of the lower valley and bolter of the upper valley must several times greater than the thermal energy (about 0.026 cu ) at room temperature.

$$
\text { (le) } \Delta E>k T \text { of } \Delta B>0.026 \mathrm{ev}
$$

2. The separation energy b/w the valleys must be smaller than the gals energy b/w the conduction band and valance band. (ie) $\Delta B<E g$. otherwise semiconductor will break down and become highly conductive before the electrons to begin to trento to the upper valley nole-electoron pains formation is created.
3. Electrons in the lower valley most have high mobility, small effective mass: whereas in the upper valley most have low mobility, large effective mass.
Guam diode and Guan effect:-
A Gun diode is one of the tramsfored electron devices, which is aform of diode used in high freq applications. Its internal construction is different from diodes and it consists only of $N$-doped Gains semiconductor material. Figure bellow shows the schematic diagram of n-type Gait diode.
 contact.

Gun effect:-
Gun effect means, the periodic furatuations of current passing through the $n$-type Gats sample when the applied field exceded a certain critical value $(2-4 \mathrm{kv} / \mathrm{cm})$. The Semiconductor devices which have this effect is known as Gum effect devices.

The Scientist J.B Groom also observed the following things.

From Gun's observation the caroler drift velocity is linearly increased from Zero to a max when the electric Geld is varied from zero to a threshold value when the electric field is beyond the threshold value for the n-type GaiA, the doit velocity is decreased and the diode exhibit -ve resistance. This is shown bellow.
doit


Guan also found that, the period of oscillations was equil to the toronsit time of the electrons through the specimen.
(ie) $Y_{0}=Y=\frac{L}{V d}$
brew of oscillations $f=\frac{1}{\gamma_{0}}=\frac{\text { ld }}{L}$

$$
v_{d}=f L
$$

Gum also observed that the threshold electric field ' $E_{G h}^{\prime}$ ' varied with length and type of material. For example for $n$-type Gaits of Length $L=210 \mu \mathrm{~m}$ and periodic fluctuation occured ins the specimen voltage above 590, then threshold field is

$$
E_{G h}=\frac{V_{t h}}{L}=\frac{59}{210 \times 10^{6} \times 10^{2}}=2810^{\text {volt }} / \mathrm{cm}
$$

This Gunn effect con be explained on the basis of two valley motel theory of RWH theory.. That means explain about two valley model theory of RWIt the dry.

Modes of operation of Gunn effect diodes:-
There are mainly two modes of operation of boik negative differential resistance devices.

1. Guam oscillation mode:-

This mode is defined in the region where the product of frequency multiplied by Length is about $10^{7} \mathrm{~cm} / \mathrm{s}$ and the product of doping multiplied by Length is greater than $10^{2} / \mathrm{cm}^{2}$.
2. Stable amplification mode:-

This mode is defined in the reglum where the product of frequency times length is aboot $10^{7} \mathrm{~cm} / \mathrm{s}$ and the product of doping times length is b/w $10^{11}$ and $10^{12} / \mathrm{cm}^{2}$
criterion for classifying the modes of operation:-
The Guan effect diodes are basically made from an $n$-type Gals, with the concent oration of bree electrons ranging from $10^{14}$ to $10^{17}$. per cubic centimeter at room temperature. Its typical diamensions are $150 \times 150 \mathrm{~mm}$ in cross section and 30 um long.

The time rate of growth of space charge layers is given by

$$
\begin{equation*}
Q(x, t)=Q(x-2 d t, 0) \exp \left(\frac{t}{1 d}\right) \tag{1}
\end{equation*}
$$

where $Y_{d}=\frac{\epsilon}{\sigma}=\frac{G}{e n_{0}\left|\mu_{n}\right|}$
$\epsilon=$ semiconductor dielectric permithoity
$n_{0}=$ dopinij concentration
$u_{n}=-v e$ mobility
$e=$ electron charge, $\sigma=$ conductivity
Fig bellow clarifies the above equation

so the factor of max growth is glen by

$$
\begin{aligned}
\text { growth factor }= & \frac{Q\left(L, L / v_{d}\right)}{Q(0,0)}=\exp \left(\frac{L}{|0| 6 d}\right) \\
& =\exp \left(\frac{L \eta_{0} e\left|\mu_{n}\right|}{G v_{d}}\right)
\end{aligned}
$$

For a large space chare growth, this factor most be leorjer than unity.

$$
\text { That means } \begin{aligned}
& \frac{L \text { noelun }]}{\text { Bled }}>1 \\
L n_{0} & >\frac{G \text { led }}{\text { elem| }}
\end{aligned}
$$

Here for n-type Gats. the value $\frac{G v_{d}}{\mathrm{e}\left|\mathrm{un}_{n}\right|}$ is about $10^{12} / \mathrm{cm}^{2}$.

This is the criterion for classiting the modes of operation for Gum effect diodes.
prob Anntype Gains diode has the following parametor.
Electron drift velocity $v_{d}=2.5 \times 105 \mathrm{~m} / \mathrm{s}$
Negative electron mobility $\left|\mu_{\mathrm{n}}\right|=0.015 \mathrm{~m}^{2} / \mathrm{v}-\mathrm{s}$
Relative dielectric constant 6 or $=13.1$
vetormine the criterion for classifying the modes of operation.
Sol The criterion for classifying the modes of operation for Goun-etfect diode is

$$
\begin{aligned}
& \text { coL }>\frac{\text { Gut }}{\text { e|un| }} \\
& \text { where } E=\text { Go Goo } \\
& =8.854 \times 10^{-12} \times 13.1 \\
& \therefore u_{d}=2.5 \times 10^{5} \mathrm{~m} / \mathrm{s} \\
& e=1.6 \times 10^{-19} \mathrm{col} \\
& \left|\mu_{u}\right|=0.015 \mathrm{~m}^{2} / \mathrm{v}-\mathrm{s} \\
& \frac{\text { Vd }}{e\left|\mu_{m l}\right|}=\frac{8.854 \times 10^{-12} \times 13.1 \times 2.5 \times 10^{5}}{1.6 \times 10^{-19} \times 0.015} \\
& =1.19 \times 10^{16} / \mathrm{m}^{2} \\
& =1.19 \times 10^{12} / \mathrm{cm}^{2}
\end{aligned}
$$

That mes no L $S 1.19 \times 10^{12} / \mathrm{cm}^{2}$ So device is operated in Gun oscillation mode. characteristics of Grum diode:-

1. Gown diode uses a $10-12$ supply with typical bias eworent of 250 mA .
2 . The out pot power is 25 mw to 250 mw in $x$-band
3 . efficiency is $2 \%$ to $12 \%$

Avalanche toronsit time devices:-
It is possible to make a microwave diode exhibit -we resistance by having delay b/wo voltage and current in an avalanche togather with transit time through the material. such device are called avalanche transit time devices.

There are three different modes of avalanche oscillator.

1. IMPATT: impact Ionization aualamehe torerisititime device.
2. TRAPATT:- Traped plasma avalanche triaged transit time device
3. BARBTT:- 13 corries injected toronsit time device

IhPatt diode:-
IMPATT stands for impact ionization avalanche toronsit time device. In IHPATT diode the -ve resistance is proved by showing $180^{\circ}$ phase diff b/w applied voltage and resulting current. This $180^{\circ}$ phase difference $6 / w$ voltage and resulting current provided by the combination of delay involved in generating avalanche current multiplication togather with delay due to torensit time through the drift space.

Doping protile:-
Figares (a), (b) and (c) bellow shows the doping protile of varioos stuructiong of IrpanT diode.

Fig(a): Abropt p-ntunction


Fig(b): Lineerly graded PN Function


Fig(c): $p-i-n$ diode

Doping protile

walking (operation) of IMPATT diode:-
Figure bellow shows impart diode with Junction b/w pt and n layers.


Initially a high potential gradient back ballsing the diode causes a flow of minority cooriers across the function. This high $d c$ field is the threshold field to stout the avalanche multiplication: Now let us superimpose RF AC voltage on top of high $d c$ voltage. woe to this velocity of minority cavoriers incrieasy and result in aditional electrons and holes by knocking them out of the crystal structure by so called impact e ionozation. These additional Carriers inturn generate new carriers and this process continuous and is known of Avalanche motiplication. since sliginal de field is threshold and so the voltage across the diode exceded toehold value during the $R F$ the cycle and avalanche current multiplication
taking place during this entire time. since avalanche multiplication is not instamioos, this process infract takes a time such that the current pulse man at the Junction occurs at the instant when RE voltage is zero end going-ve. A $90^{\circ}$ phase shift b/w voltage and curvet hay been achieved.

The current pulse shown bellow is situated at the Junction.


The generated current pulse at the function moves towards the cathod due to apphed reverse blase with a doit velocity us. The time taken by the pulse to reach the cathod. depends on this velocity and on the length of the dort reglom. The length is adjusted
such that time taken for current polse to move from $v=0$ position to $v=-v e m a y ~ o f ~ R F ~ c y c l e ~$ exactly $90^{\circ}$. Hence voltage and current are $180^{\circ}$ out of phase and so -be resistance has been proved to exist. The frequency of oscillator or resomont frequency of IHPATT diode is given by

$$
\begin{aligned}
& t=\frac{1}{2 Y}=\frac{V d}{2 L} \quad \text { where } L \text { is Length } \\
& \text { of the doit space. }
\end{aligned}
$$

ootpot power \& efficiency of IMPATT diode:-
The max outport power of diode is limited by semicundoctor material and the max voltage that con be applied across diode is given by

$$
\begin{equation*}
V_{m}=E_{m} L \tag{1}
\end{equation*}
$$

where $L$ is the depletion Length and Em is max electric field. The mar voltage limited by the breakdown voltage and man current cooried by the diode limited by the avalamene brearedowan process.
$\therefore$ The max current is given by

$$
\begin{align*}
I_{m}=\tau_{m} A & =\sigma_{m} \cdot A \\
& =\frac{E_{s}}{r} \cdot E_{m} \cdot A \\
& =\frac{V e_{d S} E_{m} A}{L} \tag{2}
\end{align*}
$$

$\therefore$ upper limit of power import is given by

$$
\begin{equation*}
P_{m}=I_{m} v_{m}=\Sigma_{m}^{2} \operatorname{Gr} \operatorname{ld} A \tag{3}
\end{equation*}
$$

The capacitance across the space charge region is defined as

$$
\begin{equation*}
C=\frac{G s A}{L} \tag{4}
\end{equation*}
$$

substitute eq. (4) in (3) and apply

$$
2+y=1
$$

$$
\text { (ie) } \quad 2+=\frac{1}{Y}=\frac{v_{d}}{L}
$$

$$
L=\frac{V d}{2 t}
$$

$$
P_{m}=E_{m}^{2} \text { led } k \cdot c
$$

$$
=E_{n}^{v} v d \cdot \frac{\text { bd }}{2 t} \cdot c
$$

$$
=\frac{B_{n}^{2} \cdot v d}{2 t \cdot \frac{2 \pi t}{2 \pi t c}}=\frac{B_{m}^{2} v_{d}}{4 \pi t^{2} \cdot x_{c}}
$$

(1.e) max power that con be applied to the mobile carriers decree as $\frac{1}{f^{2}}$

The efficuen of mupATT diode is given by $\quad \eta=P_{a c} / P_{d c}=\left(\frac{l_{a}}{v_{d}}\right)\left(\frac{I_{a}}{I_{d}}\right)$ where $l a$ and $I_{a}$ are ace vote and current led and Id are de voltage and current.

Theoritical efficiency of IHPATT diode is $30 \%$. Bot practical efficiery is less than $30 \%$ and is $15 \%$ for $s i, 23 \%$ for Gals. cheracterstics:-

1. Thesritical efficiency $\eta=30 \%$

But practical efficury is $\angle 30 \%$
and $15 \%$ for si
$23 \%$ for Gals
2. frequency: 1-300 GHZ
3. Han old power from a single diode in $x$ bond is 5 w .

Drawbacks:-

1. efficiency of improte diode is Less
2. IMPATT diode is very noisy because avalanche is a noisy process. Morse figure for IrIpATr diode being 3odis which is not good os Gum diode and klystron oscillator. TRAPATT diode:-

Trap TRAPATT diode stands for trapped plasma avalanche triggered transit diode. It is a high efficiency microwave generator capable of operating from several hundred $\mathrm{NHz}^{\mathrm{Hz}}$ to several GHz . The combrguration used

For mamifacturing TRAPATT diode is ptrnt and material used is silicon. The TRAPATT diode is shown bellow.


A typical voltage -current waveforms
for TRAPATT diode of am ptmnt operating with an square wave current drive pulse is shown belloco. chooginy formation exteractionaction


The electric fred is uniform at point $A$ and its maymitude is loose bot less than the value required to breall down. From point $A$ the diode is linearly charges because of the generated minority couriers and certain s field is reached soy point $B$ the electric held decoress to point $C$. Dorims this time ( $B$ to $C$ ) felid is
sufficiently large for avalanche to continue and a dense plasma of electrons and holes are created. As these clectoruns and holes move to the ends of the depletion layer, the field forther decreed to point D. A long time is required to remove the plasma because plasma charge is very large and at point $E$ plasana is removed. Any residual Charge in the depletion region removed later so voltage increase from $E$ to $F$. At point $F$ all the charge that way generated internally has been removed. From point $F$ to $G$ the diode is charges up like a capacitor. At point $G$ the current goes to Fro for half period and voltage remains constant at $V_{A}$ until the current comes back (for next cycle).

The main advatage of Trapatt diode over Impatt diode is its efficiency. The efficiency of TRAPATY diode is $15 \%$ to $40 \%$. The draw back of TRAPATT diode is its noise figure is S 30 dB : So it is very wolsey compared to IMPAT diode.

Comparison b/w IHPATT and TRAPATT diodes:-

IMPATT diode

1. IMPATT stands for impact zomization avalanche toronsit time.
2 . The configuration used for Irlpatt diode is shown bellow

2. The voltage and current wave forms shown bellow.

3. Thesiitical efficiency is $30 \%$ practical efficiency is $<30^{\circ} \%$.
4. frequency of operation is

$$
1-300 \mathrm{GHZ}
$$

6. IHPATT dude is mossy and its Noise figure is 30 dB .

TRAPATT diode.
TRAPATT stands for Trapped plasma avalanche torigged transit diode.
The configuration used bor TRAPATT diode is show m bellow


The voltage and current wave forms shown bellow.

efficiency is longe compered to IMAPATY and is efficiony is 15 to $40 \%$
its natural frequency od resonant prequy is limited to 10 GHZ.
its Noise fire is greater than 30 dB

3. Unlike low frequency measurements, many cevantities measured at lw frequencies are relative and it is not necessary to know their absolute Values.
4. For power measurement it is usually sufficient to know the ratio of two powers rather than exact input or output powers.
5. At ul frequency we con measure the following parameters. 1. power 2. SuR 3. Attenuation 4. Frequency 5. phase 6. impedance 7. Insertion and reflection losses 8. Q-factor.

MiCrowave Bench-Gemeral measurement setup:-
The General Microwave bench setup for measurement of any parameter in miarocoaves is shawm bellow.
wave indicator


Here signal generator is a microwave sooarce whose ootpot power is of the older of millicwatts. It could be Gums diode oscillator, a bacicward wave oscillator (or) reflex klystron oscillator.

Isolator is a two port microwave device, which has a property that it provides minimum attenuation in toward transmission and provides maximum attenuation in bacieward direction. Since it provides maximum attenuation in Bacicword direction, it prevents reflechons if amy (due to mismatch of load ond line) to reach the generator.

The precision attenuator can provide 0 to 50 dis attenuation above its insertion loss. A frequency meter is used for direct reading of frequency that consists of a single cylindrical cavity which con be adiosted to resonance to measure frequery and is slot coupled to the waveguide.
slotted lime consists of a slotted
section, atraveling probe carriage and facility for attaching detecting instruments. The slot is made at the centre of the broad face of the waveguide parallel to the axis of waveguide. A small probe is inserted through the slot to sense the brad strength of the standing wave pattern inside the waveguide. This probe is on a Carriage plate which moves on the top surface of the wavegoide. This probe is connected to connected to corstal detector so that the ootpot from the detector is praporitional to the square of the import voltage at that position of the probe. As the probte moves along the
the waveguide slot, it gives am ootpot proportional to the standing wave inside the waveguide. Since the crystal diode is a squire law device, the square root of the ratio of max output to min output gives the uswr

$$
\text { (i.e) } \quad \text { VSWR }=\sqrt{\frac{V_{\text {man }}^{2}}{V_{\text {min }}^{2}}}=\frac{V_{\text {max }}}{U_{\text {miM }}}
$$

we cam also find the position of Unain and Unix and from that calculate wavelength ( $\lambda y$ ) of the wave Let $y_{\text {mini }}$ and $y_{2 \mathrm{~min}}$ are two successive positions of Univ then

$$
\begin{aligned}
& \frac{\lambda g}{2}=y_{2 \text { min }}-y_{1 \text { min }} \\
& \lambda y=2\left[y_{2 \text { min }}-y_{1 \text { min }}\right]
\end{aligned}
$$

Attenuation Measurement:-
Microwave components and devices almost always provide some degree of attenuation. Attenuation is the ratio of input power to the output power and is normally expressed in $\mathrm{d} / \mathrm{l}$.
(ie) Attenuation $($ in $d B)=10 \log \frac{P_{\text {in }}}{P_{\text {int }}}$
The anoint of attenuation ${ }_{x}^{\text {ot adericon }}$ Can be measured by two methods.

1. power ratio method
2. RF substitution method.
3. power ratio method:-

This method involves measuring import power and output power with and without the device whose attenuation is to be measured ap shown in set up, and setup 2 shown in bigares bellow. The powers are measured in each set up as $P_{1}$ and $P_{2}$. The ratio of powers $\frac{P_{1}}{P_{2}}$ expressed in dis gives the attenuation of that device.


Fig:1. Set up 1, power ratio method


Fig 2: Setup 2, power ratio method

$$
\therefore \text { Attenuation }(\text { in } d B)=10 \log \frac{P_{1}}{P_{2}}
$$

The drawback of this method is that the attenuation measured corresponds to two power positions on the power meter with a squire law crystal detector characteristics shown bellow. Due to nun linear characteristics the two powers measured and the attenuation calculated will not be accurate:


RF substitution method:-
This method overcumes the drawback of power ratio method since here we measured attenuation at a single power position.

In this method, in set upi measure the ootpot power $s c y$ ' $p$ ' by including the device whose attenuation is to be measured as shown in try bellow.

In setup 2 this device is replaced by a precision attenuator which cam be adjusted to obtain the same power ' $P$ ' as measured in setup,. under this condition the attenuation read on the precision attenuator wood give attenuation of the se device directly.


Fig 2: Set op $p_{2}$, RF substitution method.
Frequency measurement:-
The frequency of the nw source cam be measured by using any one of the following three methods.

1. Electorumic method for frequency measurement:-

In this method unknown torequerency is Compared with the hormonics of a known lower frequeseny by use of a variable frequency generator, a hormonic generator and a mixer of shown in big bellow.


Here toot and $n$ to are known values and from that expression we con calculate microwave frequency of the signal.
slotted lime method:-
we know that the relation b/w $\lambda \mathrm{g}, \lambda_{\mathrm{c}}$ and $\lambda_{0}$ is given by

$$
\frac{1}{\lambda_{0}^{2}}=\frac{1}{\lambda_{y}^{2}}+\frac{1}{\lambda_{c}^{2}} \quad \text { CD }
$$

where $\lambda_{0}$ is free space wavelength. and $\lambda_{c}$ is cot-att wavelength. If dominant mode $T E_{10}$ is propagated in a rectenjular wave gold then $\lambda_{c}=2 a$
where ' $a$ ' is the broader diramension of Rectenjdar waveguide.
$\lambda g$ is the guide coavelenyth and which con be measured by finding positions of successive minimas of maximas Let $y_{1 \mathrm{~min}}$ and $y_{2 \mathrm{~min}}$ are positions of two successive minimus as shown in tog. bellow


$$
\begin{equation*}
\text { (1.e) } \frac{\lambda y}{2}=y_{2 \text { min }}-y_{1 \text { min }} \tag{2}
\end{equation*}
$$

Therefore by using eu ( $n$ we con calculate $\lambda_{0}$ and by using $\lambda_{0}$ calculate unicnown frequency by using the expression $f=\frac{c}{\lambda_{0}}$.
3. Wave meter (01) frequency meter method:-

A wave meter is constructed of a cylindrical cavity resonator with a variable short clocult transmission. The shorting plunger is used to change the resonance frequency of the cavity by changing the Cavity length. wavemeter axis is so placed that it is perpendicular to broad wall of the waveguide of shown bellow.

cavity wave meters core two types. transmission type and absaption type. In toronsmission tape cavity signal transmitted only when cavity toned to signal frequency and In absolution type cavity signal attenuated, when cavity tuned to signal frequency. The absorption type is pretered for laboratory frequency measurement. The resonant frequency of the Cavity wavemeter is determined by the physical diamensions $a, b, d$ and
mode is determed by $m, n$ and $p$ as given by

$$
f_{0}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{d}\right)^{2}}
$$

So varying the cavity length by movable short corwit, we con change the resonant frequency, while we are toning whenever observe the min Power in the power meter that resonant pequeny is equll to signal frequency and absorption cavity characteristics core shown bellow


Measurement of phase shift:-
The phase shift introduced by a un Nlw cam be measured by using the set up shocon in ting bellow.


Here signal from $\mu \omega$ source split op in to two equal parts using the 1 -plane Tee Junction, one going to the unknown netwolic whose phase shift is to measure and other to the calibrated preassion phase shifter. Now the stenderd phase shifter adjusted untill the two signals on the GRo are in phase as shown bellow and the relative phists of the two networks are now equal.


The reading on the precision phase shifter now gives the phase shift provided by the Netwolll of shown bellow.


Measurement of voltage standing wave ratio (uswr): The standing wave ratio is defined as the ratio of maximum to minimum voltage on a lime having standing wave as shown bellow.
voltage



$$
\therefore \quad V_{s w r}=s=\frac{V_{\text {max }}}{U_{\text {mix }}}=\frac{1+|k|}{1-|k|}
$$

where $k$ is reflection coeficient, $k=\frac{V_{r}}{V_{i}}$
when $k=0, s=1 \quad$ Ur
w his $s=00$
so $k$ varies from o to
$\mathrm{Vrit}^{7}$ reflected voltap $v_{i} i$ incident voltage
s varies from 1 to 00
Depending on the value of uscor, there are two types of vscur measurements

1. Low USWR measurement ( $s<10$ )
2. High VswR measurement ( $s>10$ )
3. Low vswR measurement ( $s<10$ ):-

Figure bellow shows the setup which


In this method of measurement, adjusting the attenuator to give an adequate reading on the volt: meter. The prose on the slotted section is moved to get max reading on the voltmeter (max). Next the probe on the slotted line adjusted to get min reading on the meter ( $l_{\mathrm{min}}$ ). The ratio of birst reading to second reading (ie $\frac{U_{\text {max }}}{L_{\text {min }}}$ ) gives the vswR

The voltmeter its self calibrated in terms of UswR. In this case the probe is moved to give max deflection on the meter by adjusting attenuator. This Full scale deflection (FSIJ) corresponds to a For example FSID of 10 mv corresponds to US coR of 1. UswR of 1 f Now the travelling probe is adjusted to get mim reading on the meter. If mim reading coresponds to 5 mv . then

$$
\text { USWR }=\frac{10 \mathrm{mv}}{5 \mathrm{mv}}=2
$$

If min readim corresponds to 3.3 mv

$$
\begin{aligned}
& \Rightarrow \text { vswR }=3 \\
\text { if } U_{\text {mim }} & =2.5 \text {, } \operatorname{VSCOR}=4, \\
\text { if } U_{\text {min }} & =1 \text { inv, vscor }=10 \text { etc. }
\end{aligned}
$$

2. High uswr measurement ( $S>10$ ):-

The method which is used to measure high USWR (ie) greater than 10 is called a dooble minimum method. In this method moving the probe measure the mim power in the pow or meter.

Now the probe is moved to a point where the poor is twice min . Let this position be denoted by ' $d$ '. The probe is then moved to twice mim power point on the other side of the min power. Let this position be $d_{2}$ and which is shown bellow.

we know that $P_{\min } \propto V_{\min }^{2}$

$$
\begin{aligned}
& 2 P_{\text {min }} \alpha U_{x}^{2} \\
& \frac{1}{2}=\frac{U_{\text {min }}^{2}}{U_{x}^{2}} \\
U_{x}= & \sqrt{2} U_{\text {min }}
\end{aligned}
$$

If dominant TElo mode is propagated $\lambda_{c}=2 a_{1}$, 'a' is wider dramension.
If frequency is known, then

$$
\begin{aligned}
\lambda_{0} & =\frac{c}{f} \\
\text { Then } \lambda_{g} & =\frac{\lambda_{0}}{\sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}}
\end{aligned}
$$

Then uswr cen be calculated by using the expression

$$
\text { uswR }=\frac{\lambda_{g}}{\pi\left(d_{2}-d_{1}\right)}
$$

Impedance measurement:-
Impedance at lw frequencies can be measured using any of the following two methods.

1. using slotted lime
2. using Reflectometer.
using slotted lime:-
The impedance of unknown load con be measured by using slotted lime in conjunction with the smith chart as follows.
3. First by using the setupt shown bellow determine standing cave ratio (by finding $V_{\text {man }}$ and Loin and with the value of 's' draw the $S$-circle on the smith chart.

4. To determine $z_{L}$, the hoad replaced by a shot crocuit shown in set Up-2 and note the locations of $U_{\text {min }}$ on the scale and select any mim or Load reference point.


Fig-2: Set up-2
3. Now with the load on the lime, mote the position of $U_{\min }$ and determine the shift (l) in mim as compared to shot circuit case

4. Now on the smith chart, move towards the load a distance $l$ from the location of 6 min. Find $Z_{2}$ at that point, which is shown bellow on a smith chart $\pm 180$

Neasurement of ' $Q$ ' of a cavity resonator:-
There are several methods for measuring the 'Q' of a cavity resonator. Among that transmission method is the simplest and the seton for transmission method of measuring ' $Q$ ' is shown bellow.


Fig: Setup for measuring $Q$ of a cavity resonator.
In this method the Cavity resonator used as a transmission type device and output signal is measured as a function of the frequency results in a resonance curve shown bellow.


By varying the frequency of microwave source and keeping signal level constant, the output power is measured. Alternatively cavity can be tuned by keeping both signal Level and frequency constant and output
2. Using Reflectometor:-

The typical setup for reflectometer technique is shown bellow.


Here two directional couplers are used to Sample the incident power $p_{i}$ and reflected power Br from Load. Both Dey are identical except their direction. The magnitude of reflection coef. directly obtained on the reflectometor from which impedance con be calculated.

From reflectometer reading we have

$$
P=\sqrt{\frac{P_{r}}{P_{i}}}
$$

Now calculate impedance by using the relation

$$
p=\frac{z_{L}-z_{0}}{z_{L}+z_{0}}
$$

where to is characteristic impedance and which is known value.
power is measured
From the resonance curve Halt power Benandwidth is given by

$$
13 \cdot w=w_{2}-w_{1}
$$

$\therefore$ The $Q$ of cavity resonator is
given by

$$
Q=\frac{\omega_{\pi}}{\omega_{2}-\omega_{1}}
$$

where br is resonance frequency.
From the expiresion, we can soy that narrow the B.W, Q of a system is high.
Measurement of power using 130 orometer.
The following, various methods to measure power based on its Level (Ul) low or hiyn)

1. ireasuroment of low power ( 0.01 mw-lomw)

- Bolometer technique

2. Measurement of medium pocoes ( $10 \mathrm{~m} \mathrm{\omega}$-low) calorimetoric Technique
3. vilasurement of high power (Slow) calorimetoric watt meter.

Measurement of low microcoave power ( $0.01 \mathrm{mw}-10 \mathrm{mLo}$ ) using Bolometer technique:-

Bolometer technique is used to measure power (i.e) from 0.01 mw to 10 mw . Bolometer) is a termperature sensitive device, whose resistance
varies with temperature. These are two types Barretters and thermistor. Barretters have tue temperature coefficient (ie resistance increases by lencreasing the temp) and thermistors have -be temp. Coefficient (lie resistance decreases os temp. increases], which are shown bellow.



Figure bellow shoos the circuit arranyment of a balanced bolometor bridge technique in which bolometer itself is used in one of the arms of the bridge.

un wo
Initially, the bridge is balanced by adjusting $R_{5}$, which varies be poor applied to the bridge and the bolometer element is brought to a' predetermined operating resistance.
before nw power is applied Let the voltage of the battery be $E_{1}$ at the balance: The re power is now applied and this power gets desipatted in the bolometer. The bolometer heats up and it changes its resistance. Therefore the bridge becomes unbalanced: The applied $a_{c}$ power is is changed by changing voltage to $E_{2}$ to get back the bridge is balanced and this change in $d c$ battery voltage $\left(E_{1} \sim E_{2}\right)$ will be proportional to the Ho power. Alternatevely, the detector 'G' can be directly calibrated interms of microwave power So that when the bridge is unbalanced, the detector reads the $\mu \omega$ power directly.

The evorors in the above method must be avoided by providing some type of temperature compensation, because the bolometers are temp sensitive. The resistors $R_{6}$ and $R_{7}$ in the circuit arrangement shown in fig provide the required temp. Compensation.
Measurement of Insertion loss:-
The insertion loss is defined of the difference in the power arriving at the formmating load with and without the device in the circuit.
(1.e) insertion loss $(d / 3)=\log \frac{P_{i}}{P_{0}}$
where $P_{i}-$ in pot siymal
where $P_{i}$ - ingot siymal power $\overline{P_{0}}$
Po-ootpot signal power
if $\frac{P_{i}}{P_{0}}=\frac{P_{i}-P_{7}}{P_{0}} \cdot \frac{P_{i}}{P_{i}-P_{7}}$

$$
\text { Then insertion loss } \begin{aligned}
(\text { in } d i s) & =\operatorname{lol} \frac{\operatorname{cog}}{p_{i}} \\
& =10 \log \frac{p_{i}-p_{0}}{p_{0}} \cdot \frac{p_{i}}{p_{i}-p_{r}} \\
& =10 \log \frac{p_{i}-p_{0}}{p_{0}}+10 \log \frac{p_{i}}{p_{i}-p_{r}}
\end{aligned}
$$

=Attenuation toss + Reflection loss.
where $P_{r}$ is reflection power at the import terminals.
Here attenuation loss is calculated by using
RF substitution method and reflection loss is calculated by using reflectometer.
Reflectometer :- Reflection loss is measured by using retlectometor technique which is Shown bellow. $13 y$ using this we can measure the incident power Pi and reflection power $P_{0}$ by the networks which is shown belloco Reflectometer $P=\sqrt{\frac{P_{i} / 100}{P_{h} / 100}}=\sqrt{P_{i}}$


By using this setup measure $p_{i}$ and $p_{r}$
Then reflection loss $\left(d(3)=10 \log \frac{P_{i}}{P_{i}-p_{0}}\right.$
$\therefore$ Insertion loss $=$ Attenuation loss + reflection loss.

## UNIT-4



Significance of TUIT:-
mm wm um
Travelling wave Tubes (TUTs) have gains of yod s and above, with band widths move than an octave. A bandwidth of loctave is one in which the upper frequency is twice the lower frequency.

Tut is a broadband slow-wave device. Its operation Ps based on the interaction btw the travelling wave structure and the election beam.

Types and Characteristics of slow-wave structures:-
The travelling-wave tubes (TWTS) are commonly employed where a high power is required. The ordinary resonators, which are used in klystrons, cannot generate a large output, because the gain-band width product is limited by the resonan Circuit.

The phase velocity of a wave in ordinary waveguides is, greater than the velocity of light in vaccum. In the operation of TWT, the election beam should keep in step with the microwave signal.

(e) corrugated waveguide

Helix: - Different types of slow-wave structures are shown in figure. A helix is the most commonly helix is also construe -ted by the use of a round wire that acts as a slow-rate Structure.

$$
\frac{V_{p}}{c}=\frac{p}{\sqrt{p^{2}+(\pi d)^{2}}}=\sin \psi .
$$

where, $\cdot C=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the velocity of light in free space.
, $P$. $=$ helix pitch.
$\cdot d=$ diameter of the helix.
$\psi=$ pitch angle.

(a) Helical coil

(b) One turn of the helix.

Mostly, the helix is forrounded by a dielectric filled cylinder. In the axial direction, the phase velocity can be given as

$$
v_{p e}=\frac{p}{\sqrt{\mu \in}\left[p^{2}+(\pi d)^{2}\right]}
$$

If we consider the case of small pitch angle, the phase angle, the phase velocity along the coil the free space is given by

$$
v_{p} \approx \frac{P_{c}}{\pi d}=\frac{\omega}{\beta}
$$

The $\omega$ - $\beta$ (or Brillouin) diagram as shown in figure. is very useful in designing a helix slow-wave structure. once $\beta$ is found, $V_{p}$ can be computed eq. Furthermore, the group velocity of the wave is merely the slope of the curve and is given by

$$
v_{g}=\frac{\partial \omega}{\partial \beta}
$$


fig:- $\omega$ - $\beta$ diagram for a helical shucture
The helical periodic structure can be expanded as an infinite series of waves with a period ' $L$ ', all the same frequency but with different phase velocities, and is given by

$$
U_{p n}=\frac{\omega}{\beta_{n}}=\frac{\omega}{\beta_{0}+(2 \pi n / L)}
$$

The group velocity that can be calculated from equation is

$$
v_{g}=\left[\frac{d\left(\beta_{0}+2 \pi n / L\right)}{d \omega}\right]^{-1}=\frac{d \omega}{d \beta_{0}}
$$

where, $\beta_{0}=$ phase constant of the avg. election velocity.
$\alpha=$ period of the helix.
$n=$ any integer value.


Structure of $T \omega T$ and Amplification process:mum minn mn minn

The schematic diagram of a typical TWT is shown in figure. The TWT consists of an electrongun that is used to produce a narrow constant velocity electron beam. This election beam is, in turn, passed through the centre of a long axial helix. Hence we use a magnetic field of high focusing capacity to avoid spreading and it will guide the wave through the centre of the helix.

A helix is a loosely wound, thin conducting helical wire. that acts as a slow-wave structure the signal to be amplified is applied to the end of the helix that $i_{p}$ adjacent to the election gun. The amplified signal appears at the output or the other end of the helix under appropriate conditions.


Suppression of Oscillations: a Traveling-wave Tube.
fig:- schematic diagram of a Traveling -wave Tube. Suppression of Oscillations:-

In order to prevent oscillations from being spontaneously generated in a traveling-wave tube, it $p_{p}$ necessary to prevent internal feedback arising from reflections due to slight impede -nice mismatches at the output terminal.

It is necessary to prevent back wand-wave Oscillations from being generated in TWT. This situation is controlled by introducing an attenuator which is placed near the input end of the TWT that absorbs any wave propagated along the helix.

Nature of the four propagation Constants:uam wan wm wan n wame

By solving the electronic and circuit equations at the same time the wave modes of helix type travelling wave tube are determined. Thus, the values of the four propagation constants ? are given by

$$
\begin{aligned}
& \gamma_{1}=-\beta_{e} c \frac{\sqrt{3}}{2}+j \beta e\left[1+\frac{c}{2}\right] . \\
& \gamma_{2}=\beta e c \frac{\sqrt{3}}{2}+j \beta e\left[1+\frac{c}{2}\right] . \\
& \gamma_{3}=j \beta e(1-c) . \\
& \gamma_{4}=-j \beta e\left(1-\frac{c^{3}}{4}\right) .
\end{aligned}
$$

Derivation of Expression for four propagation constants of TWT:
From eqns, it can be observed that there are four different solutions for the propagation constants. It implies that there are four modes of travelling waves in the 0 -type travelling -wave tubs

$$
\begin{equation*}
\left(8^{2}-8_{0}^{2}\right)(\rho \beta e-8)^{2}=-j \frac{8^{2} 8_{0} Z_{0} \beta B_{0} I_{0}}{2 v_{0}} \tag{1}
\end{equation*}
$$

It can be seen that the above equation is of fourth order in $P$ and therefore it has four roots. By numerical methods and digital computer, exact solutions can be obtained.

$$
8_{0}=j \beta_{e}
$$

Then eq (1) is reduced to

$$
\begin{equation*}
(8-j \beta e)^{3}(8+j \beta e)=2 C^{3} \beta e^{2} \gamma^{2} \tag{2}
\end{equation*}
$$

where, $C$ is the travelling wave tube gain parameter and is given as

$$
\begin{equation*}
c=\left[\frac{I_{0} z_{0}}{4 v_{0}}\right]^{1 / 3} \tag{3}
\end{equation*}
$$

From eq (2), it can be observed that there are three travelling waves equivalent to $e^{-j \beta e z}$ and one backward travelling wave which is equivalent to $e^{i \beta e z}$. For the three forward travelling waves, the propagation constant is giver.

$$
\begin{equation*}
\gamma=j \beta e-\beta_{e} c \delta \tag{4}
\end{equation*}
$$

where it is assumed that $c \delta \ll 1$
substitute of eq (4) in eq (2) results in

$$
\begin{equation*}
\left(-\beta_{e} c \delta\right)^{3}\left(j 2 \beta_{e}-\beta_{e} c \delta\right)=2 c^{3} \beta_{e}^{2}\left(-\beta_{e}^{2}-2 j \beta_{e}^{2}\left(\delta+\beta_{e}^{2} c^{2} \delta^{2}\right) .\right. \tag{5}
\end{equation*}
$$

since $c s \ll 1$, eq (5) is reduced to

$$
\delta=(-j)^{1 / 3} .
$$

From the theory of complex variables, the three roots of $(-j)$ can be plotted in figure.

$$
\delta=(-j)^{1 / 3}=e^{-j((\pi / 2+2 n \pi) / 3)} \quad(\because n=0,1,2)
$$

The first root $\delta_{1}$ at $n=0$ is

$$
\delta_{1}=e^{-j \pi / 6}=\frac{\sqrt{3}}{2}-j \frac{1}{2}
$$

The second root $\delta_{2}$ at $n=1$ is

$$
\delta_{2}=e^{-j 5 \pi / 6}=-\frac{\sqrt{3}}{2}-j \frac{1}{2}
$$

The Third root $\delta_{3}$ at $n=2$ is

$$
\delta_{3}=e^{-j 3 \pi / 6}=j
$$

The fourth root $\delta$ corresponding to the backward traveling wave can be obtained by setting

$$
\begin{gathered}
\delta=-j \beta_{e}-\beta_{e} c \delta_{4} \\
\delta_{4}=-j \frac{c^{2}}{4}
\end{gathered}
$$


fig: - The roots of ( $-j$ )

Thus, the values of the four propagation constants 8 are given by

$$
\begin{aligned}
& 8_{1}=-\beta e c \frac{\sqrt{3}}{2}+j \beta e\left(1+\frac{c}{2}\right) \\
& 8_{2}=\beta_{e} c \frac{\sqrt{3}}{2}+j \beta e\left(1+\frac{c}{2}\right) . \\
& \delta_{3}=j \beta e(1-c) \\
& \delta_{4}=-j \beta e\left(1-\frac{c^{3}}{4}\right)
\end{aligned}
$$

The above four equations represent four different modes of wave propagation in the 0 -type helical travelling-wave tube. M-type tubes:-
crossed field tubes are referred to as $m$-type tubes, which deal with the propagation of waves in a magnetic field. In crossed field tubes both static electric and magnetic fields are present and they are perpendicular to each other. The election motion takes place in are where the fields are perpendicular to each other.

Crossed-field effects:wm um ~ mm

If both electric and magnetic fields áve present, motion of electrons depends on the orientation of electric and magnetic fields.
(a) If electric and magnetic fields are in the same direction or the opposite direction, the magnetic field exects no force on electrons.
(b) If electric and magnetic fields perpendicular to each other, electron motion depends on both electric and magnetic fields, this type of field is called cross-field.

In crossed-field tubes, the elections emitted by the Cathode are accelerated by the electric field, and the motion of elections is perpendicular to both fields as is indicated in figure.

(a) Cross -field tubes
(b) Linear Beam Tubes

The presence of cross field interactions makes the electrons to give up some of its energy to the RF field only those elections which have given sufficient energy to the Rf field can only be eligible to travel to the anode end.

## Magnetrons:-

The magnetrons is a crossed field device, in which electric field and magnetic field are produced in a direction perpendicular to each other, in a way to cross each other Therefore, the flow of electrons is perpendicular to both the fields. In magnetrons anode and cathode are concentric and cylindrical type structures.

## Types of magnetrons:-

There are three basic types of magnetrons.

1. cyclotion-frequency magnetrons.
2. Negative-resistance (split-anode) magnetrons.
3. Cavity - type magnetrons.

Cyclotron. frequency magnetons:- Its principle of working is based on the synchronization be orbiting elections in a magnetic field and a resonant circuit that is tuned to the cyclotion frequency. In this magneton the ac component of electric field and the Oscillations of elections are parallel to the field.
Negative -resistance magnetons:- It uses the static negative resistance between two anode segments. In this operation When both segments are at the same potential. The magnetic field effects can only be sufficient to keep flow of elections to reach anode.

Traveling -wave magnetrons:- These magnetons provide oscillation of high peak power and peak power capability that is increase by about an order of magnitude to 100 hw . Since the efficiency is very low in the first two types. They are nor dealt in this chapter. In general, travelling wave magretion, uses Cavity resonators.
8-Cavity cylindrical magnetron:-
Cavity magnetrons is high power microwave oscillate with high efficiency. The operating principle of this device is interaction of elections with the perpendicularly oriented elates and magnetic fields. An 8-cavity cylindrical magneton pis show in in figure.

(a) structure of a cavity magnetron.

(b) Cylindrical Configuration

The heated cathode is a source of electrons in a magnetron. The Cavity magnetron consists of 8 cavity that are tightly coupled to each other.

$$
\begin{gathered}
\phi_{v}=\frac{2 \pi n}{N} \\
n=0, \pm 1, \pm 2, \ldots, \pm\left[\frac{N}{2}-1\right], \pm \frac{N}{2}
\end{gathered}
$$

That is. $N / 2$ mode of resonance can exist only in resonator systems that have an even number of resona -tors. If $n=N / 2, \phi_{v}=\pi$. since the phase angle of $\pi$ radians is in the $N / 2$ mode, this mode of resonance is called the $\pi$-mode. electron trajectories at various magnetic field:- comparing the magnitude of electric and magnetic fields, we can understand the trajectory of an election coming from cathode, moving towards anode takes different path through the interaction space. election trajectories at various magnetic fields $v_{0}$ are present.
(a) If $B=0$, electrons emitted from the cathode move along the radical direction.

Conversely, the cut-off voltage is given by

$$
V_{C}=\frac{e}{8 m} B^{2} b^{2}\left(1-\frac{a^{2}}{b^{2}}\right)^{2}
$$

Hull cut-off voltage equation:-

A cavity cylindrical magnetron is the most commonly used magnetron, because for a cross - field device the electric and magnetic fields are perpendicular to each other and the path of the elections in the presence of this cross-field is naturally parabolic. The eqnfor the hull cutoff voltage is given by

$$
V_{c}=\frac{e}{8 m} B^{2} b^{2}\left(1-\frac{a^{2}}{b^{2}}\right)^{2}
$$

where, $B=$ magnetic flux density.
$a=$ Cathode radius.
$b=$ anode radius.
$e=$ charge of the electron.
$m=$ mass of the electron.
Derivation of Hull cut -of voltage equation:-
The flull-cut-0ff condition is obtained, under the Condition that there is no RF field, which in turn definer anode voltage is function of magnetic field.

Here, we will discuss the Hull cut-off voltage equation force acting on the election is

$$
F=\text { Bey }
$$


(a) No magnetic
field

(b) small magnetic
field
(b) when a small $B$ is applied (at a perticular to radical electric field), electron trajectories bend and follow a Curved path.
(C) The magnetic field required to return electrons to the Cathode while Just grazing the surface of the anode is called the critical magnetic field. $\left(B_{C}\right)$ and is also knower as the cut-off magnetic field. under this condition, the motion of elections is shown in figure.

(a) magnetic field $=B_{C}$

(b) magnetic field $>B C$
(d) If the magnetic field is made larger than the critical field $(B>B C)$, the electrons travel with a greater velocity and may return to the cathode quite faster.

The eqn of the cut-off magnetic field is given by

$$
B_{c}=\frac{\left(8 v_{0} m / e\right)^{1 / 2}}{b\left(1-\frac{a^{2}}{h^{2}}\right)}
$$

In the direction of $\phi$, the force component is given by

$$
F \phi=e B U_{p} .
$$

where, $U_{P}=$ velocity in the direction of the oladical distance $p$, from the center of the cathode cylinder.
Torque in direction of $\phi$ can be given $a_{p}$

$$
\begin{equation*}
T_{\phi}=\rho F_{\phi}=e \cdot \rho \cdot v_{\rho \cdot B} \tag{1}
\end{equation*}
$$

Angular momentum $=$ angular velocity $\times$ moment of Inertia.

$$
\begin{equation*}
=\frac{d \phi}{d t} \times m p^{2} \tag{2}
\end{equation*}
$$

Time rate of angular momentum $=\frac{d}{d t}\left[\frac{d \phi}{d t} \times m p^{2}\right] \rightarrow(3)$
This gives the torque in $\phi$ direction. equating (3) and (1).

$$
\frac{d}{d t}\left[\frac{d \phi}{d t} \times m \rho^{2}\right]=e \cdot \rho \cdot v_{p} \cdot B
$$

That $p_{\imath}, \quad 2 m \rho \frac{d \phi}{d t}+m \rho^{2} \frac{d^{2} \phi}{d t^{2}}=e . \rho \cdot v_{\rho} \cdot B$
W.K.T

$$
\begin{equation*}
v_{p}=\frac{d p}{d t} \tag{4}
\end{equation*}
$$

Therefore eqn(4) becomes.

$$
\begin{equation*}
2 m p \frac{d \phi}{d t}+m \rho^{2} \frac{d^{2} \phi}{d t^{2}}=e B \cdot \rho \cdot \frac{d \rho}{d t} \tag{5}
\end{equation*}
$$

Integrating eqn (5) with regard to ' $t$ ' we will get

$$
2 m \rho \cdot \phi+m \rho^{r} \frac{d \phi}{d t}=e \cdot B \cdot \frac{\rho^{r}}{2}
$$

For a particular direction, m.p. $\varnothing$. can be considered a Constant.

$$
\begin{equation*}
m p^{v} \frac{d \phi}{d t}+c=e \cdot B \cdot \frac{\rho^{v}}{2} \tag{6}
\end{equation*}
$$

The value of $C$ can be determined by applying boundary conditions.

$$
O+C=\frac{e \cdot B \cdot a^{2}}{2} \text { (or) } C=\frac{e B a^{2}}{2}
$$

Substituting the above value of $C$ in eq (6), we get

$$
\begin{align*}
m p^{2} \frac{d \phi}{d t} & =\frac{e B}{2}\left(p^{2}-a^{2}\right) \\
\frac{d \phi}{d t} & =\frac{e B}{2 m}\left(1-\frac{a^{2}}{p^{2}}\right) \tag{7}
\end{align*}
$$

(01)
when $P=a$ (ie., at Cathode), $\frac{d \phi}{d t}$ approches 0 .
when $\rho>a, \frac{d \phi}{d t}$ approches $(\omega)_{\max }$.

$$
\begin{equation*}
\left(\frac{d \phi}{d t}\right)_{\max }=(\omega)_{\max }=\frac{e B}{2 m}=\frac{e B_{c}}{2 m} \tag{8}
\end{equation*}
$$

where, $B=B C$ is the cut-off magnetic flux densily. We know that the potential energy of electron = Kinetic energy of electrons.

That is

$$
\begin{align*}
& e v_{0}=\frac{1}{2} m v^{2} \\
& e v_{0}=\frac{m}{2}\left(v_{p}^{2}+v_{\phi}^{2}\right) \tag{9}
\end{align*}
$$

where $\quad v_{\rho}=\frac{d p}{d t}$ and $v_{\phi}=\rho \frac{d \phi}{d t}$.
Rewriting the equation (substituting $v_{p}$ and $v_{\phi}$ ) eqn(e

$$
e v_{0}=\frac{m}{2}\left[\left(\frac{d P}{d t}\right)^{2}+P^{2}\left(\frac{d \phi}{d t}\right)^{2}\right]
$$

from eqn (7) and (8).

$$
\begin{aligned}
& \quad\left[\frac{d \phi}{d t}\right]=(\omega)_{\max }\left(1-\frac{a^{2}}{p^{2}}\right) \\
& C v_{0}=\frac{m}{2}\left[\left(\frac{d p}{d t}\right)^{2}+p^{2}(\omega)^{2} \max \left(1-\frac{a^{2}}{p^{2}}\right)^{2}\right] .
\end{aligned}
$$

$\rightarrow$ At anode $\rho=b, \frac{d \rho}{d t}=0$, substituting these boundary
Conditions in the above equation.

$$
\begin{equation*}
\frac{m}{2}\left[b^{v}(w)_{\max }^{v}\left(1-\frac{a^{v}}{b^{2}}\right)^{2}\right]=e v_{0} \tag{10}
\end{equation*}
$$

substituting eqn (8) inegn (10) we get.

$$
\begin{array}{r}
\frac{m}{2} b^{2}\left(\frac{e B_{c}}{2 m}\right)^{2} \times\left(1-\frac{a^{2}}{b^{2}}\right)^{2}=e v_{0} \\
\frac{e^{2} B c^{2} b^{2}}{8 m}\left(1-\frac{a^{2}}{b^{2}}\right)^{2}=e v_{0} \\
B_{c}=\frac{\left(8 v_{0} m / c\right)^{1 / 2}}{b\left(1-\frac{a^{2}}{b^{2}}\right)} \tag{ii}
\end{array}
$$

i.e., for a given $v_{0}$, the electrons will not reach at anode, if $B>B C$.
on the other hand, the cut-off voltage is given $b_{y}$

$$
\begin{equation*}
V_{C}=\frac{e}{8 m} B^{2} b^{2}\left(1-\frac{a^{2}}{b^{2}}\right)^{2} \tag{12}
\end{equation*}
$$

$\rightarrow$ It can be observed that for a given $B$, the elections will not reach at anode, if $v_{0}<v_{c}$.eqn (12) called the Hull. cut-off voltage equation.

Modes of Resonance and $\pi$-mode operation:-
We have discussed the effect of election and magnetic fields in the previous section when no RF field ip applied. Let us assume RF oscillations are initiated and are maintained sustainably and assume that these oscillations are created by some noise which is transient in the magnetrons.

(a) magnetron Operation in 7 mode
(b) electron cloud showing spokes

The electron ' $a$ ' that is entering the interaction space during Therefore, its velocity decreases and Pt spends more time in interaction space during its long journey. In the Same way, the electrons that are emitted a little later to be in the correct position move faster and try to catch up with electron " $a$ ". The electron ' $b$ ' which $p_{i}$. introduced during accelerated RF field takes energy from the oscillators. This results in increased velocity of electrons. since the velocity is

Separation of $\pi$-mode:-
modes of Operation: - The resonant circuit that is used in Cavity resonators acts similar to an L.C tank ckt. If two resonant circuits are coupled. they produce two different resonant frequencies. In general, if resonant Ckt are coupled together, they produce ' $n$ ' different and district resonant frequencies.

Strapping:- keeping magneton operations in the $\pi$ mode is difficult; unless special means are employed. Strapping is one method that is used. strapping means to connect altevate anode plates with two conducting rings oof heavy gauge touching the anode's poles at the dots as shown in figure.


Disadvantages of strapping:-
$\longrightarrow$ strapping may Cause power losses in the conduct h. rings.
$\longrightarrow$ strapped resonators are very difficult.
$\longrightarrow$ As the number of cavities increase ( 16 or 32 ), strapping has no effect on mode Jumping.

A magnetron that needs no strapping is the rising Sun magnetron and is shown in figure.

(a) Rising fun

(b) plot

(c) Vane
fig:- Traveling. wave magnation rector atone.
Frequency pushing and pulling:- similar to reflex klystron; it is possible to change the resonant frequency oof magus trons by changing the and voltage, which results in em change in the orbital velocity of electrons.
8-cavity cylindrical magnetron:-

fig:- 8-canty magnetron.

2104 UNIT-11 Circular Waveguides
Why we have moved towards Circular waveguides from rectangular Waveguides??
$\rightarrow$ This is because of mode of Propagation. Different types of modes are Possible through Circular waveguides compared to Rectangular Waveguides.
$\rightarrow$ The highest possible bandwidth allowing only a single mode to propagate with circular Waveguides is only 1.360:1.
$\rightarrow$ Rectangular Waveguides have a much larger bandwidth over which only a single mode can propagate.

Rectangular Waveguides
Circular Waveguides

* "Cartesian" coordinate system is used.


Ranges:-
$x \longrightarrow-\infty$ to $+\infty$
$y \longrightarrow-\infty$ to $+\infty$
$z \longrightarrow-\infty$ to $+\infty$
$d l=d x+d y+d z$
$d s=d y d z a_{x}$
$d s=d x d z a y$
$d s=d x d y a_{z}$
$d v=d x d y d z$

* "Cylindrical" coordinate system is used.


Ranges:-

$$
\begin{aligned}
& P \rightarrow 0 \text { to } \infty \\
& \varnothing \rightarrow 0 \text { to } 2 \pi \\
& z \rightarrow-\infty \text { to }+\infty \\
& d l=d P a P+P d \phi a^{\circ} \phi+d z a z \\
& d s=P d \phi d z a p \\
& d s=d P d z a \phi \\
& d s=d P P d \phi a z \\
& d v=P d P d \phi d z
\end{aligned}
$$

del operator:-

$$
\nabla=\frac{\partial}{\partial p} a_{p}+\frac{1}{p} \frac{\partial}{\partial \phi} a_{\phi}+\frac{\partial}{\partial z} a_{z}\left(\frac{1}{m} \text { or }^{-1}\right)
$$

Circular waveguide:-
A. circular waveguide is a tubular conductor for transmitting a microwave signal.
Consider, a Circular Waveguide of inner rad ' $P$ '. Suppose that it is varying over ' $\phi$ ' Which ranges from 0 to $2 \pi$.

Field expressions:-

$$
\begin{aligned}
& \epsilon_{p}=-\frac{r}{h^{v}} \frac{\partial \epsilon_{2}}{\partial p}-\frac{j \omega \mu}{h^{2}} \frac{1}{p} \frac{\partial H_{2}}{\partial \varnothing} \\
& \epsilon_{\phi}=-\frac{-r}{h^{2}} \frac{1}{p} \frac{\partial \epsilon_{2}}{\partial \varnothing}+\frac{j \omega \mu}{h^{2}} \frac{\partial H_{2}}{\partial p} \\
& H_{p}=-\frac{r}{h^{2}} \frac{\partial H_{2}}{\partial p}+\frac{j \omega \varepsilon}{h^{2}} \frac{1}{p} \frac{\partial \epsilon_{2}}{\partial \varnothing} \\
& H_{\phi}=-\frac{r}{h^{2}} \frac{1}{p} \frac{\partial H_{2}}{\partial \varnothing}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{2}}{\partial p}
\end{aligned}
$$

To obtain the above expression, Consider the Maxwells equations.

$$
\begin{aligned}
& \bar{V} \bar{E} E-B^{\circ} b \\
& \nabla \times 4=J+S^{\circ}
\end{aligned}
$$

Simplify them as you solved earlier in Rectangular

Propagation of TM wave in a Circular Waveguide
TM wave:- A Wave whose magnetic field component is Zero in the direction of propagation but with non-zero electric field component is referred to as "Transverse Magnetic wave.

$$
\text { i.e., } H_{2}=0 \text { but } \epsilon_{2} \neq 0
$$

Consider, Helmholtz wave equations

$$
\begin{aligned}
& \nabla^{2} \epsilon_{2}=-\omega^{2} \mu \varepsilon \epsilon_{2} \longrightarrow \text { (1) } \\
& \nabla^{2} H_{2}=-\omega^{2} \mu \varepsilon H_{z} \longrightarrow \text { (2) }
\end{aligned}
$$

For a TM wave, $H_{z}=0$. Now, from eqn's-O\& (2)

$$
\begin{aligned}
& \nabla^{2} \epsilon_{z}=-\omega^{2} \mu \varepsilon \epsilon_{2} \\
& \nabla^{2} H_{2}=0
\end{aligned}
$$

Hence, our required wave equation is,

$$
\begin{gathered}
\nabla^{2} \epsilon_{z}=-w^{2} \mu \varepsilon \epsilon_{z} \longrightarrow(3) \\
\Rightarrow \frac{\partial^{2} \epsilon_{z}}{\partial p^{2}}+\frac{1}{p} \frac{\partial \epsilon_{z}}{\partial p}+\frac{1}{p^{v}} \frac{\partial^{2} \epsilon_{z}}{\partial \phi^{2}}+\frac{\partial^{2} \epsilon_{z}}{\partial z^{2}}=-\omega^{2} \mu \varepsilon \epsilon_{z}
\end{gathered}
$$

consider, $\frac{\partial}{\partial z}=-r$ (indicating that wave is propagating in forward

$$
\begin{aligned}
& \Rightarrow \frac{\partial^{2} \epsilon_{2}}{\partial p^{2}}+\frac{1}{p} \frac{\partial \epsilon_{2}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} \epsilon_{z}}{\partial \phi^{2}}+r^{2} \epsilon_{z}=-\omega^{2} \mu \varepsilon_{1} \epsilon_{z} \\
& \Rightarrow \frac{\partial^{2} \epsilon_{z}}{\partial p^{2}}+\frac{1}{p} \frac{\partial \epsilon_{2}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} \epsilon_{z}}{\partial \phi^{2}}+r^{2} \epsilon_{2}+\omega^{2} \mu \varepsilon \epsilon_{z}=0 \\
& \Rightarrow \frac{\partial^{2} \epsilon_{2}}{\partial p^{2}}+\frac{1}{p} \frac{\partial \epsilon_{z}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} \epsilon_{2}}{\partial \phi^{2}}+\left(r^{2}+\omega^{2} \mu \varepsilon\right) \epsilon_{z}=0 \\
& \Rightarrow \frac{\partial^{2} \epsilon_{z}}{\partial p^{2}}+\frac{1}{p} \cdot \frac{\partial \epsilon_{z}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} \epsilon_{2}}{\partial \phi^{2}}+h^{2} \epsilon_{z}=0 \rightarrow \text { (4) }
\end{aligned}
$$

-6: Using variable -separable method

$$
\text { Let, } \epsilon_{z}=P Q
$$

Here, $P$ is a Pure function of ' $P$ '
$Q$ is a Pure function of ' $\phi$ ' from $e q^{n}-(4)$;

$$
\begin{aligned}
& \frac{\partial^{2}(P Q)}{\partial p^{2}}+\frac{1}{p} \frac{\partial(P Q)}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2}(P Q)}{\partial \phi^{2}}+h^{2}(P Q)=0 \\
\Rightarrow & Q \frac{\partial^{2} P}{\partial p^{2}}+\frac{Q}{P} \cdot \frac{\partial P}{\partial P}+\frac{p}{p^{2}} \frac{\partial^{2} Q}{P Q^{2}}+h^{2}(P Q)=0
\end{aligned}
$$

divide the entire 'expression with ' $P Q$ '.

$$
\frac{1}{p} \frac{\partial^{2} p}{\partial p^{2}}+\frac{1}{p p} \frac{\partial p}{\partial p}+\frac{1}{p^{2} Q} \cdot \frac{\partial^{2} Q}{\partial \phi^{2}}+h^{2}=0
$$

multiply the entire expression with " $p^{2}$ "

$$
\begin{align*}
& \frac{P^{2}}{P} \cdot \frac{\partial^{2} P}{\partial P^{2}}+\frac{P}{P} \cdot \frac{\partial P}{\partial P}+\frac{1}{Q} \cdot \frac{\partial^{2} Q}{\partial \phi^{2}}+h^{2} P^{2}=0 \rightarrow \text { (5) }  \tag{5}\\
& \text { Let, } \frac{1}{Q} \cdot \frac{\partial^{2} Q}{\partial \phi^{2}}=-n^{2}
\end{align*}
$$

Solution for ' $Q$ ' is given by,

$$
\begin{aligned}
& \quad Q=A_{n} \cos n \phi+B_{n} \sin n \phi \quad \quad\left(A_{n}, B_{n} \rightarrow\right. \text { constants) } \\
& \text { consider, } \frac{P^{2}}{P} \cdot \frac{\partial^{2} P}{\partial p^{2}}+\frac{P}{P} \frac{\partial P}{\partial P}+\left(\begin{array}{c}
P^{2} h^{2}=0 \\
\left.n^{2}\right)
\end{array}\right.
\end{aligned}
$$

multiply the above equation with $P$

$$
\begin{aligned}
& \Rightarrow P^{2} \cdot \frac{\partial^{2} P}{\partial P^{2}}+\frac{P P P}{\partial p}+P^{2} P h^{2}=0 \\
&-n^{2} P
\end{aligned} \quad\left(x^{2} \frac{\partial^{2} y}{\partial x}+\frac{\partial y}{\partial x}+\left(x^{2}-x^{2}\right) y=0\right) \rightarrow \text { Bess ed function) }
$$

Solution for Besselfunction: -

$$
y=c_{n} J_{n}(x)^{\prime}
$$

$J_{n}(x) \rightarrow$ infinite no. of roots exist for the given Bessel function (ie, acts as an)

$$
C_{n} \longrightarrow \text { constant value }
$$ oscillator

$$
\begin{align*}
& \Rightarrow(P h)^{2} \frac{\partial^{2} p}{\partial(P h)^{2}}+P h \cdot \frac{\partial p}{\partial p}+\underbrace{(P h)^{2} p-=0}_{n^{2} P} \\
& \text { Converted into } \\
& \text { (Bessel function } \\
& \text { format) } \\
& \Rightarrow \quad P=C_{n} J_{n}(P h)  \tag{6}\\
& \epsilon_{z}=P Q \\
& \Rightarrow \epsilon_{z}=C_{n} J_{n}(P h)\left[A_{n} \operatorname{con}(n \phi)+B_{n} \sin (n \phi)\right] \\
& \Rightarrow \epsilon_{z}=C_{n} I_{n}(P h) \sqrt{A_{n}^{2}+B_{n}^{2}}\left[\cos \left(n \phi+\tan ^{-1}\left(\frac{B_{n}}{A_{n}}\right)\right)\right] \\
& \text { (Magnitude } \underbrace{\text { (Angle }}_{\text {(formate format) }} \\
& \Rightarrow \epsilon_{Z}=c_{0} J_{n}(P h) \cos \left(n \phi^{\prime}\right) \longrightarrow \text { (7) }\left(\because c_{n} \sqrt{A_{n^{2}}+B_{n}^{2}}=c_{0}\right)
\end{align*}
$$

Boundary conditions:-

$$
\epsilon_{z}=0
$$

from (7):

$$
\begin{aligned}
& 0=c_{0} J_{n}(a h) \cos \left(n \phi^{\prime}\right) \\
& \Rightarrow \quad c_{0} J_{n}(a h)=0 \\
& \Rightarrow \quad J_{n}(a h)=0 \\
& \Rightarrow \quad a h=P_{n m}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{nm}} \rightarrow$ sol $^{\text {n }}$ for Bessel function

$$
\Rightarrow h=\frac{P_{n m}}{a}
$$

Now,

$$
\epsilon_{z}=C_{0} J_{n}\left(p \frac{P_{n m}}{a}\right) \cos \left(n \phi^{\prime}\right)
$$

| $n m$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 0 | 2.4 | 5.5 | 8.6 |
| 1 | 3.82 | 7.1 | 1.1 |
| 2 | 5.13 | 8.4 | 1.6 |
| 3 | 6.3 | 9.76 | 13.06 |

$$
\begin{aligned}
& \epsilon_{p}=\frac{-r}{h^{2}} \frac{\partial \epsilon_{z}}{\partial p}-\frac{j \omega \mu}{h^{2}} \frac{1}{p} \frac{\partial H_{2}}{\partial \varnothing} \\
& \text { but } H_{2}=0 \\
& \Rightarrow \epsilon_{p}=-\frac{r}{h^{v}} \frac{\partial \epsilon_{2}}{\partial p}-\frac{j \omega \mu}{h^{\nu}} \frac{1}{p}(0) \\
& \Rightarrow \epsilon_{p}=\frac{-r}{h^{v}} \frac{\partial \epsilon_{z}}{\partial p} \\
& \Rightarrow \epsilon_{p}=\frac{-\gamma}{h^{2}} \frac{\partial}{\partial p}\left[c_{0} J_{n}\left(p \frac{P_{n m}}{a}\right) \cos \left(n \phi^{\prime}\right)\right] \\
& \Rightarrow \epsilon_{p}=\frac{-r}{h^{\nu}} C_{0}\left(\frac{P_{n m}}{a}\right) J_{n}^{\prime}\left(p \frac{P_{n m}}{a}\right) \cos \left(n \phi^{\prime}\right) \\
& \therefore \epsilon p=-\frac{r}{h^{2}} c_{0}\left(\frac{P_{n m}}{a}\right) J_{n}^{\prime}\left(P \frac{P_{n m}}{a}\right) \cos \left(n \phi^{\prime}\right)
\end{aligned}
$$

similarly,

$$
\begin{aligned}
& \epsilon_{\phi}=\frac{\gamma}{h^{2}} \frac{n C_{0}}{p} J_{n}\left(P \frac{P_{n m}}{a}\right) \sin \left(n \phi^{\prime}\right) \\
& H_{p}=-\frac{\gamma}{h^{2}} \frac{\partial H_{2}}{\partial p}+\frac{j \omega \varepsilon}{h^{2}} \frac{1}{p} \cdot \frac{\partial \epsilon_{z}}{\partial \phi}=\frac{j \omega \varepsilon}{h^{2}} \frac{1}{p} \cdot \frac{\partial \epsilon_{2}}{\partial \phi^{\prime}} \\
\Rightarrow & H p=\frac{-j \omega \varepsilon}{h^{2}} \cdot \frac{n C_{0}}{p} J_{n}\left(p \frac{P_{n m}}{a}\right) \sin \left(n \phi^{\prime}\right) \\
& H_{\phi}=\frac{-\gamma}{h^{2}} \frac{\partial H_{2}}{\partial \phi} \cdot \frac{1}{p}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{2}}{\partial P}=\frac{-j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial P} \\
\Rightarrow & H \phi=\frac{-j \omega \varepsilon}{h^{2}} C_{0} \frac{P_{n m}}{a} J_{n}^{\prime}\left(P \frac{P_{n m}}{a}\right) \cos \left(n \phi^{\prime}\right)
\end{aligned}
$$

Propagation of $T \in$ Wave in Circular Waveguide:
TE Wave:- A Wave whose electric field componer is zero in the direction of Propagation but With non-zero magnetic field component is referred to as "Transverse Electric Wave".
i.e., $\epsilon_{z}=0$ and $H_{z} \neq 0$
consider helmholtz wave equations

$$
\begin{aligned}
& \nabla^{2} \epsilon_{z}=-\omega^{2} \mu \varepsilon \epsilon_{z} \rightarrow \text { (1) } \\
& \nabla^{2} H_{z}=-\omega^{2} \mu \varepsilon H_{z} \longrightarrow \text { (2) }
\end{aligned}
$$

For a $T \in$ wave, $\epsilon_{2}=0$. Now from eqn's-(1) \&(2)

$$
\begin{aligned}
& \nabla^{2} \epsilon_{z}=0 \\
& \nabla^{2} H_{z}=-\omega^{2} \mu \varepsilon H_{z}
\end{aligned}
$$

Hence, our required Wave equation is,

$$
\begin{gather*}
\nabla^{2} H_{z}=-\omega^{2} \mu \varepsilon H_{z} \rightarrow \text { (3) }  \tag{3}\\
\Rightarrow \frac{\partial^{2} H_{z}}{\partial p^{2}}+\frac{1}{p} \frac{\partial H_{z}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} H_{z}}{\partial \phi^{2}}+\frac{\partial^{2} H_{z}}{\partial z^{2}}=-w^{2} \mu \varepsilon H_{z}
\end{gather*}
$$

consider, $\frac{\partial}{\partial z}=-\gamma$ (indicating that the wave is in forward $z$-direction

$$
\begin{aligned}
& \Rightarrow \frac{\partial^{2} H_{2}}{\partial p^{2}}+\frac{1}{p} \frac{\partial H_{2}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} H_{z}}{\partial \phi^{2}}+\gamma^{2} H_{z}=-\omega^{2} \mu \varepsilon H_{z} \\
& \Rightarrow \frac{\partial^{2} H_{z}}{\partial p^{2}}+\frac{1}{p} \frac{\partial H_{z}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} H_{z}}{\partial \phi^{2}}+r^{2} H_{z}+\omega \mu \varepsilon H_{z}=0 \\
& \Rightarrow \frac{\partial^{2} H_{z}}{\partial p^{v}}+\frac{1}{p} \frac{\partial H_{z}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} H_{z}}{\partial \phi^{2}}+\left(\gamma^{2}+\omega \mu \varepsilon\right) H_{z}=0 \\
& \Rightarrow \frac{\partial^{2} H_{z}}{\partial p^{v}}+\frac{1}{p} \frac{\partial H_{2}}{\partial p}+\frac{1}{p^{2}} \frac{\partial^{2} H_{2}}{\partial \phi^{2}}+h^{2} H_{z}=0 \rightarrow \text { (4) }
\end{aligned}
$$

Using variable-separable method
Let, $H_{2}=P Q$
fere, $P$ is a Pure function of ' $P$ '
$Q$ is a Pure function of " $\varnothing$ ' from eq - (4)

$$
\begin{aligned}
& \frac{\partial^{2}(P Q)}{\partial P^{2}}+\frac{1}{P} \frac{\partial(P Q)}{\partial P}+\frac{1}{P^{2}} \frac{\partial^{2}(P Q)}{\partial \phi^{2}}+h^{2}(P Q)=0 \\
\Rightarrow & Q \cdot \frac{\partial^{2} P}{\partial P^{2}}+\frac{Q}{P} \frac{\partial P}{\partial P}+\frac{Q}{R^{2}} \frac{\partial^{2} P}{\partial \phi^{2}}+h^{2}(P Q)=0
\end{aligned}
$$

Divide the entire expression with " $P Q$ "

$$
\frac{1}{p} \cdot \frac{\partial^{2} p}{\partial p^{2}}+\frac{1}{P p} \frac{\partial p}{\partial p}+\frac{1}{p^{2} Q} \cdot \frac{\partial^{2} Q}{\partial q^{2}}+h^{2}=0
$$

Multiply the entire expression with "p"

$$
\begin{equation*}
\frac{p^{2}}{P} \cdot \frac{\partial^{2} p}{\partial p^{2}}+\frac{p}{P} \cdot \frac{\partial P}{\partial P}+\frac{1}{Q} \cdot \frac{\partial^{2} Q}{\partial \phi^{2}}+P^{2} h^{2}=0 \tag{5}
\end{equation*}
$$

$$
\text { Let, } \frac{1}{Q} \cdot \frac{\partial^{2} \phi}{\partial \phi^{2}}=-n^{2}
$$

Solution for ' $Q$ ' is given by,

$$
Q=A_{n} \cos (n \phi)+B_{n} \sin (n \phi)
$$

from (5);

$$
\frac{p^{2}}{p} \cdot \frac{\partial^{2} p}{\partial p^{v}}+\frac{p}{p} \cdot \frac{\partial p}{\partial p}+\left(p^{2} h^{2}-n^{2}\right)=0
$$

multiply above expression with " $p^{\text {" }}$

$$
\begin{aligned}
& P^{2} \cdot \frac{\partial^{2} p}{\partial p^{2}}+p \frac{\partial p}{\partial p}+\left(P^{2} h^{2}-n^{2}\right) p=0 \\
\Rightarrow & (P h)^{2} \frac{\partial^{2} p}{\partial(P h)^{2}}+(P h) \frac{\partial p}{\partial(p h)}+\left(P^{2} h^{2}-n^{2}\right)(p)=0 \\
& x^{2} \frac{\partial^{2} y}{}+\times \frac{\partial y}{\partial x}+\left(x^{2}-n^{2}\right) y=0 H \text { (Bessel function) }
\end{aligned}
$$

Solution:-

$$
\begin{align*}
& y \\
&=c_{n} J_{n}(x)  \tag{6}\\
& \therefore \quad P=c_{n} J_{n}(P h)
\end{align*}
$$

We have, $H_{z}=P Q$

$$
\begin{align*}
& \Rightarrow H_{z}=C_{n} J_{n}(P h)\left[A_{n} \cos (n \phi)+B_{n} \sin (n \phi)\right] \\
& \Rightarrow H_{z}=C_{n} J_{n}(P h) \sqrt{A_{n}^{2}+B_{n}^{2}}\left[\cos \left(n \phi+\tan ^{-1}\left(\frac{B_{n}}{A_{n}}\right)\right)\right] \\
& \Rightarrow H_{z}=C_{0} J_{n}(P h) \cos \left(n \phi^{\prime}\right) \rightarrow(7) \tag{ㄱ}
\end{align*}
$$

Boundary conditions:-
$\bar{E}$ maylic either in $P$-direction/ $\varnothing$ direction/ $z$-direction $\epsilon_{2}=0$ from the definition of. Te wave. $\bar{\epsilon}$ doesnot vary with ' $\phi$ ' and hence $C_{\phi}=0$. Therefore, $\bar{\epsilon}$ lies in the dinctaidn (o nd?) ne ?

Consider, $\epsilon_{\phi}=0, P=a$ al $\phi$ ranges from. 0 to $2 \pi$. Substituting the boundary conditions in $e e^{n}-(8)$ we get,

$$
\begin{aligned}
& \epsilon_{\phi}=\frac{-r}{h^{2}} \frac{1}{P} \frac{\partial \epsilon_{z}}{\partial \phi}+\frac{j \omega \mu}{h^{2}} \cdot \frac{\partial H_{z}}{\partial P} \rightarrow(8) \\
\Rightarrow & 0=\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial P} \quad\left(\because \epsilon_{z}=0\right) \\
\Rightarrow & 0=\frac{j \omega \mu}{h^{2}} \cdot \frac{\partial}{\partial P}\left[C_{0} J_{n}(P h) \cos \left(n \phi^{\prime}\right)\right] \\
\Rightarrow & 0=\frac{j \omega \mu}{h^{2}} \cdot \frac{\partial}{\partial P}\left[C_{0} J_{n}(a h) \cos \left(n \phi^{\prime}\right)\right] \\
\Rightarrow & 0=\frac{j \omega \mu}{h^{2}} \cdot C_{0} h J_{n}^{\prime}(a h) \cos \left(n \phi^{\prime}\right)
\end{aligned}
$$

Hence, $\frac{j \omega \mu}{h^{v}} c_{0} h J_{n}^{\prime}(a h)=0$

$$
\begin{aligned}
& \Rightarrow J_{n}^{\prime}(a h)=0 \quad \text { (In acts as an oscilla } \\
& \Rightarrow a h=P_{n m}^{\prime} \\
& \Rightarrow h=\frac{P_{n m}^{\prime}}{a} \\
& \hline
\end{aligned}
$$

$$
\therefore H_{z}=C_{0} J_{n}\left(P \frac{P_{n m}^{\prime}}{a}\right) \cos \left(n \phi^{\prime}\right)
$$

Field expressions:-

$$
\begin{aligned}
& \epsilon_{p}=-\frac{\gamma}{h^{2}} \frac{\partial \epsilon_{z}}{\partial p}-\frac{j \omega \mu}{h^{2}} \frac{1}{p} \frac{\partial \epsilon_{z}}{\partial \varnothing} \\
& =-\frac{j \omega \mu}{h^{2}} \cdot \frac{1}{P} \cdot \frac{\partial \mathrm{E}_{2}}{\partial \varnothing} \quad\left(\quad \epsilon_{2}=0 \text { for } T \in \omega_{\text {ave }}\right) \\
& =-\frac{j \omega \mu}{h^{2}} \cdot \frac{1}{P} \frac{\partial}{\partial \phi}\left[C_{0} J_{n}\left(P \frac{P_{n m}^{\prime}}{a}\right) \cos \left(n \phi^{\prime}\right)\right] \\
& \Rightarrow \epsilon_{p}=\frac{j \omega \mu}{h^{2}} \frac{n c_{0}}{p} J_{n}\left(P \frac{P^{\prime \prime}}{a}\right) \sin \left(n \phi^{\prime}\right) \\
& \epsilon_{\phi}=-\frac{\gamma}{h^{2}} \frac{1}{p} \cdot \frac{\partial \epsilon_{z}}{\partial \phi}+\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}}{\partial p} \\
& =\frac{j \omega \mu}{h^{\gamma}} \cdot \frac{\partial H_{z}}{\partial p} \\
& \epsilon_{\phi}=\frac{j \omega \mu}{h^{\nu}} c_{0} \frac{P_{n m}^{\prime}}{a} J_{n}^{\prime}\left(P \frac{P_{n m}^{\prime}}{a}\right) \cos \left(n \phi^{\prime}\right) \\
& H_{p}=-\frac{r}{h^{2}} \frac{\partial H_{z}}{\partial p}+\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial \varnothing} \cdot \frac{1}{p} \\
& =\frac{-r}{h^{\nu}} \frac{\partial H_{z}}{\partial p} . \\
& \Rightarrow H_{p}=-\frac{\gamma}{h^{2}} c_{0} \frac{P_{n m}^{\prime}}{a} J_{n}^{\prime}\left(P \frac{P_{n m}^{\prime}}{a}\right) \cos \left(n \phi^{\prime}\right) \\
& H \varnothing=-\frac{r}{h^{2}} \frac{1}{p} \frac{\partial H_{2}}{\partial \varnothing}-\frac{j \omega \varepsilon}{h^{2}} \frac{\partial \epsilon_{z}}{\partial p}=-\frac{\gamma}{h^{2}} \frac{1}{p} \frac{\partial H_{z}}{\partial \varnothing} \\
& \Rightarrow H \varnothing=\frac{r}{h^{2}} \frac{n c_{0}}{p} J_{n}\left(P \frac{P_{n m}^{\prime}}{a}\right) \sin \left(n \phi^{\prime}\right)
\end{aligned}
$$

Characteristics of Circular Waveguides:-

1. cut off frequency $\left(f_{c}\right)$ :-

It is defined as "the frequency at which the Propagation constant $(\gamma)$ of a Circular waveguide becomes zero".

We know that

$$
\begin{align*}
& h^{2}=\gamma^{2}+\omega^{2} \mu \varepsilon  \tag{1}\\
\Rightarrow & \gamma^{2}=h^{2}-\omega^{2} \mu \varepsilon
\end{align*}
$$

At $f_{c}, r=0$ and $\omega=\omega_{c}$

$$
\begin{aligned}
& \Rightarrow 0=h^{2}-w_{c}^{2} \mu \varepsilon \\
& \Rightarrow w_{c}^{2} \mu \varepsilon=h^{2} \\
& \Rightarrow h=w_{c} \sqrt{\mu \varepsilon} \rightarrow \text { (2) }
\end{aligned}
$$

for $T \in \operatorname{mode}, h=\frac{P_{n m}^{\prime}}{a}$
for TM mode $h=\frac{P_{n m}^{a}}{a}$
TE mode:-

$$
\begin{aligned}
& h=\omega_{c} \sqrt{\mu \varepsilon} \\
\Rightarrow & \frac{P_{n m}^{\prime}}{a}=\frac{2 \pi f_{c}}{c} \quad\left(\because c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}\right) \\
\Rightarrow & f_{c}=\frac{P_{n m}^{\prime}}{2 \pi a} \cdot c \\
\therefore & f_{c}=\frac{P_{n m}^{\prime}}{2 \pi a} c
\end{aligned}
$$

TM mode:-

$$
\begin{aligned}
& h=\omega_{c} \sqrt{\mu \varepsilon} \\
\Rightarrow & \frac{P m}{a}=\frac{2 \pi f_{c}}{c} \\
\Rightarrow & f_{c}=\frac{P_{n m}}{2 \pi a} \cdot c \\
\therefore & f_{c}=\frac{P_{n m}}{2 \pi a} \cdot c
\end{aligned}
$$

(2) cut-off Wavelength $\left(\lambda_{c}\right)$ :-

It is defined as the wavelength at which the Propagation constant ( $\gamma$ ) of a circula waveguide becomes zero".

$$
\begin{aligned}
& \lambda_{c}=\frac{c}{f_{c}}=\frac{c}{\frac{P_{n m}^{\prime}}{2 \pi a} \cdot c}=\frac{2 \pi a}{P_{\operatorname{mm}}^{\prime}}\left(T \epsilon \bmod _{c}\right) \\
& \lambda_{c}=\frac{c}{f_{c}}=\frac{c}{\frac{P_{n m}}{2 \pi a} \cdot c}=\frac{2 \pi a}{P_{n m}} \text { (TM mode) }
\end{aligned}
$$

(3) Guided wavelength ( $\lambda_{g}$ ):-

It is defined as "the distance travelled by, wave, to produce a phase shift of $360^{\circ} 6 r$ $2 \pi$ radians".

$$
\begin{aligned}
\lambda_{g} & =\frac{2 \pi}{\beta} \\
= & \frac{\lambda_{0}}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}} \\
\therefore \lambda_{g}= & \frac{\lambda_{0}}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}}
\end{aligned}
$$

(4) Phase velocity (vp):-

It is de fined as "the velocity with which the Phase of a wave changes".

$$
\begin{aligned}
v_{p} & =\frac{\omega}{\beta}=\frac{c}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}} \\
\therefore \quad v_{p} & =\frac{c}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}}
\end{aligned}
$$

(5) Group velocity $\left(v_{g}\right)$ :-

It is defined as" the rate at which a wave Propagates through a circular waveguide".

$$
\begin{aligned}
& v_{g}=\frac{d \omega}{d \beta}=c \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}} \\
& \therefore v_{g}=c \sqrt{1-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}
\end{aligned}
$$

(6) Impedance $(\eta)$ :-

It is defined as "the strength of electric field to magnetic field strength".

$$
\begin{aligned}
& \eta_{T E}=\frac{\eta}{\sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}} \\
& \eta_{T M}=n \sqrt{1-\left(\lambda_{0} / \lambda_{c}\right)^{2}}
\end{aligned}
$$

Dominant modes of circular waveguide:-
$\rightarrow$ If You consider, $T \in$ mode, $T \epsilon_{11}$ is the dominant mode.
$\rightarrow$ If You consider. TM mode. TMOI is the dominant mode.
Cavity Resonator:-
Definition:- An electronic device consisting of a space usually enclosed by metallic walls within which electromagnetic fields (resonant electromagnetic fields) may be excited and extracted for use in microwave systems.
Explanation:-
When one end of the waveguide (Rectangular circular) is terminated with a shorting Plate and a wave is Passed, there will be reflection of wave. When the other end is also terminated with another shorting plate, the reflected wave gets bounced back. This
to-and-fro motion of the wave between the two shorting plates which are spaced at a distance of $\lambda \mathrm{g} / 2$, can produce standing waves inside the hollow space. So that it results in "Resonance phenomenos The hollow space is called "cavity" and this entire arrangement is known as "Cavity Resonator:

Expression for Resonant frequency $\left(f_{0}\right)$ in a Rectangular Waveguide:-
A Cavityresonator is a useful microwave device. If we close off two ends of a rectangular Waveguide with metallic walls, We have a rectangular cavity resonator. In this case, the wave propagating in the $z$-direction will bounce off the two walk resulting in a standing wave in the $z$ direction.


We know that

$$
\begin{align*}
& h^{2}=r^{2}+\omega^{2} \mu \varepsilon  \tag{1}\\
\Rightarrow & \omega^{2} \mu \varepsilon=h^{2}-r^{2}
\end{align*}
$$

$$
\begin{array}{ll}
\Rightarrow \omega^{2} \mu \varepsilon=h^{2}+\beta^{2} & \gamma=\alpha+j \beta \\
\Rightarrow \omega^{2} \mu \varepsilon=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}+\beta^{2} & \gamma=j \beta \text { if } \alpha=0 \\
\Rightarrow \omega=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}+\beta^{2}\right]^{1 / 2} \rightarrow \text { (2) } & A=\left(\frac{m \pi}{a}\right) \\
B=\left(\frac{n \pi}{b}\right)
\end{array}
$$

When the wave is oscillating between metallic walls of lengths ' $a$ ' and ' $c$ ' respectively, for a distance of ' $d$ ', resonance occurs in the hollow space. Therefore,

$$
\omega=\omega_{0} ; \quad \beta=\frac{2 \pi}{\lambda}=\frac{P \pi}{d}
$$

from (2);

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{p \pi}{d}\right)^{2}\right]^{1 / 2} \\
& \Rightarrow 2 \not \mu f_{0}=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{d}\right)^{2}\right]^{1 / 2} \cdot \pi \\
& \Rightarrow \quad f_{0}=\frac{1 / 2}{\sqrt{\mu \varepsilon}}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{d}\right)^{2}\right]^{1 / 2} \\
& \Rightarrow \quad f_{0}=\frac{c}{2}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{d}\right)^{2}\right]^{1 / 2} \quad\left(\because c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}\right) \\
& \therefore \quad f_{0}=\frac{c}{2}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{d}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

Expression for $f_{0}$ in circular waveguide:consider a circular cavity resonator of Cross-sectional area ' $a$ ' and length ' $d$ '. If we close off the two ends of a circular waveguide With metallic walls, we have a circular resonator.

We know that

$$
h^{2}=\gamma^{2}+\omega^{2} \mu \varepsilon \rightarrow \text { (1) }
$$

$$
\begin{aligned}
& \Rightarrow \omega^{2} \mu \varepsilon=h^{2}-\gamma^{2} \\
& \Rightarrow \omega^{2} \mu \varepsilon=h^{2}+\beta^{2} \rightarrow(2)(\because \gamma=\alpha+j \beta \Rightarrow \gamma=j \beta \text { if } \alpha=0) \\
& h=\frac{P_{n M}^{\prime}}{a} \text { (TE mode) } \\
& h=\frac{P n m}{a} \text { (TM mode) }
\end{aligned}
$$

Case (1):- TE mode from (2) $\quad \omega^{2} \mu \varepsilon=\left(\frac{P_{n m}^{\prime}}{a}\right)^{2}+\beta^{2}$.

$$
\begin{equation*}
\Rightarrow \omega=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{P_{n m}^{\prime}}{a}\right)^{2}+\beta^{2}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

At resoriance, $\omega=\omega_{0}$ ail $\beta=\frac{p \pi}{d}$

$$
\begin{aligned}
& \Rightarrow \omega_{0}=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{P_{n m}^{\prime}}{a}\right)^{2}+\left(\frac{P \pi}{d}\right)^{2}\right]^{1 / 2} \\
& \Rightarrow 2 \pi f_{0}=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{P_{n m}^{\prime}}{a}\right)^{2}+\left(\frac{P \pi}{d}\right)^{2}\right]^{1 / 2} \\
& \left.\Rightarrow f_{0}=\frac{c}{2 \pi}\left[\left(\frac{P_{n m}^{\prime}}{a}\right)^{2}+\left(\frac{p \pi}{d}\right)^{2}\right]^{1 / 2}\right]
\end{aligned}
$$

Case(ii:- TM mode from (2); $\quad \omega^{2} \mu \varepsilon=\left(\frac{P_{n m}}{a}\right)^{2}+\beta^{2}$

$$
\Rightarrow \omega=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{P_{n m}}{a}\right)^{2}+\beta^{2}\right]^{1 / 2}
$$

At resonarice $\omega=\omega_{0}$ and $\beta=\frac{P \pi}{d}$

$$
\begin{aligned}
& \Rightarrow \omega_{0}=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{P_{n m}}{a}\right)^{2}+\left(\frac{P_{\pi}}{d}\right)^{2}\right]^{1 / 2} \\
& \Rightarrow 2 \pi f_{0}=\frac{1}{\sqrt{\mu \varepsilon}}\left[\left(\frac{P_{n m}}{a}\right)^{2}+\left(\frac{P \pi}{d}\right)^{2}\right]^{1 / 2} \\
& \Rightarrow f_{0}=\frac{c}{2 \pi}\left[\left(\frac{P_{n}}{a}\right)^{2}+\left(\frac{P \pi}{d}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

Analysis of modes:- (10 determine whether TE Enol Mme exists for a
TM mode:- $\left(H_{z}=0 ; \epsilon_{2} \neq 0\right)$ Gravity nesmiator).
We know that

$$
\epsilon_{z}=c_{0} \sin \left(\frac{m \pi}{a}\right) x \sin \left(\frac{n \pi}{b}\right) y e^{-r z} \longrightarrow \text { (1) }
$$

Here, $e^{-\gamma z}=e^{-((x+j \beta) z}=e^{-j \beta z}$
Incase of a cavity resonator, the wave moves to-ad-fro in between the hollow space.
Hence, $e^{-r z}=A^{+} e^{-j \beta z}+A^{-} e^{j \beta z}$ indicating that the wave is Propagating in forward $z$-dies as well as backward $z$-direction.
Differentiate $\left(A^{+} e^{j \beta z}+A^{-} e^{j \beta z}\right) \omega \cdot r \cdot t_{0} z^{\prime}$

$$
\begin{aligned}
& =A^{+} e^{-j \beta z}(-j \beta)+A^{-} e^{j \beta z}(j \beta) \\
& =j \beta\left[-A^{+} e^{-j \beta z}+A^{-} e^{j \beta z}\right] \\
& =j \beta\left[-A^{+}+A^{-}\right]
\end{aligned}
$$

(Substituting the boundary condition
$z=0$ and $z=d$
now,

$$
\begin{aligned}
& j \beta\left[-A^{+}+A^{-}\right]=0 \\
& -A^{+}=-A^{-} \\
& A^{+}=A^{-}
\end{aligned}
$$

$$
\begin{aligned}
\therefore A^{+} e^{-j \beta z}+A^{-} e^{+j \beta z} & =A^{+} e^{-j \beta z}+A^{+} e^{j \beta z} \\
& =2\left(\frac{A^{+} e^{-j \beta z}+A^{+} e^{j \beta z}}{2}\right) \\
& =\cos \beta z \\
& \left.=\cos \left(\frac{P \pi}{+}\right) z \quad \text { (if } \beta=\frac{P \pi}{d}\right)
\end{aligned}
$$

$$
\epsilon_{z}=c_{0} \sin \left(\frac{n \pi}{a}\right) x \sin \left(\frac{n \pi}{b}\right) y \cos \left(\frac{p \pi}{d}\right) z \quad p=0,1,2, \cdots
$$

for $P=0, \epsilon_{2}$ exists. Hence, for a cavity resonator $T M_{m n_{0}}$ exists.

TE mode:- $\left(\epsilon_{2}=0\right.$ and $\left.H_{2} \neq 0\right)$
We know that

$$
\begin{aligned}
H_{z} & =c_{0} \cos \left(\frac{m \pi}{a}\right) x \cos \left(\frac{n \pi}{b}\right) y e^{-r z} \\
\Rightarrow H_{z} & =c_{0} \cos \left(\frac{m \pi}{a}\right) x \cos \left(\frac{n \pi}{b}\right) y\left[A^{+} e^{-j \beta z}+A e^{-j \beta z}\right] \\
\Rightarrow H_{z} & =c_{0} \cos \left(\frac{m \pi}{a}\right) x \cos \left(\frac{n \pi}{b}\right) y\left[A^{+} e^{-j \beta z}-A e^{j \beta z}\right] \\
\Rightarrow H_{z} & =c_{0} \cos \left(\frac{m \pi}{a}\right) x \cos \left(\frac{n \pi}{b}\right) y\left[\frac{A^{+} c^{-j \beta z}-A e^{-j \beta z}}{2 j} \cdot 2 j\right] \\
\Rightarrow H_{z} & =c_{0} \cos \left(\frac{m \pi}{a}\right) x \cos \left(\frac{n \pi}{b}\right) y \sin \left(\frac{p \pi}{d}\right) z \\
\therefore H_{z} & \left.=c_{0} \cos \left(\frac{m \pi}{a}\right) x \cos \left(\frac{n \pi}{b}\right) y \sin \left(\frac{p \pi}{d}\right) z\right], P=0,1,2, \\
f o r & =0 .
\end{aligned}
$$

for $p=0 ; H_{z}=0$ i.e., for a cavity resonator, $T \epsilon_{m n_{0}}$ doesnot exist.
Rectangular waveguides:-

$$
\begin{aligned}
& T \in \text { mode } \longrightarrow T \epsilon_{10} \\
& T M \text { mode } \rightarrow T M_{11}
\end{aligned}
$$

Circular waveguides:-
$T \in$ mode $\rightarrow T \epsilon_{11}$
TM mode $\rightarrow$ MOI
Cavity Resonators:-
TE Mode $\rightarrow T \epsilon_{101}$ \} Rectangular
$T M$ mode $\left.\rightarrow T_{110}\right\} \begin{aligned} & \text { Rectangular } \\ & \text { Cavity } \\ & \text { resonators }\end{aligned}$
$T \in M O d e \rightarrow T \epsilon_{111}$ ? Circular
$T M$ Mode $\left.\rightarrow T_{\text {III }}\right\} \begin{gathered}\text { circular } \\ \text { cavity } \\ \text { resonators }\end{gathered}$

Quality factor $(Q)$ of a cavity resonator:-
$\rightarrow$ Quality factor $(Q)$ measures the frequency Selectivity of a resonant circuit (or) an antiresonant circuit..
$\rightarrow$ If is defined as "the ratio of maximum energy stored Per cycle to the energy dissipated Per cycle".
i.e., $Q=2 \pi$ maximum energy stored $P$ er cycle
energy dissipated per cycle

$$
Q=\frac{\omega_{0} \omega}{P}
$$

Here, $\omega_{0} \longrightarrow$ Resonant frequency
$W \rightarrow$ maximum energy stored
$P \longrightarrow$ Average Powerloss
Note:- For an ideal Cavity resonator, $Q=\infty$ since

$$
P=0
$$

How a cavity resonator Works??
Consider, a cavity resonator of length 'd' ad cross-sectional area ' $a$ " as shown below:
$\rightarrow$ Assume that the two ends of the resonator are closed and a microwave signal is captured in it.
$\rightarrow$ The signal moves to-ad-fro inside the cavity, due which some energy (or) frequency is generated.
$\rightarrow$ Hence, the principle of operation of a cavity resonator is, A signal which gets trapped, inside a cavity kind of space oscillates continuously and due to the resonance of that

Particular signal, some energy/fredeency gets generated.
$\rightarrow$ Whenever a signal captured within the Cavity resonator starts generating the frequency, we need to consider the following three Parameters:
$W_{0}, W$ and $P$
$\rightarrow$ There are three conditions to be taken into consideration, While obtaining the Quality factor $(Q)$ of a cavity resonator.
(i) ' $Q$ ' of a Loaded cavity resonator $\left(Q_{L}\right)$
(ii) ' $Q$ ' of an unloaded cavity resonator $\left(Q_{0}\right)$
(iii) ' $Q$ ' due to external ohmic losses ( $Q$ ext).
$\rightarrow$ A Cavity resonator is considered to be an unloaded cavity resonator, if at all it is empty ie, contains no signal. The Quality factor of such a cavity resonator is referred to as "Qa".
$\rightarrow$ When a signal is Passed into the cavity resonator, it is referred to as a loaded cavity resonator. The Quality factor of such a cavity resonator is referred to as " $Q_{L}$ ".
$\rightarrow$ When the signal starts resonating inside the cavity, some energy/ frequency gets generated. At the same time there might be a chance of some loss in Power. The Quality factor of a cavity resonator in this cases, is referred to as "Sext".
from these (3) conditions, a relation is developed Which is given by,

$$
\frac{1}{Q_{L}}=\frac{1}{Q_{0}}+\frac{1}{Q_{\text {ext }}}
$$

Quality factor of Rectangular cavity Resonator:The Quality factor of a Rectangular cavity Resonator is given by,

$$
Q=\frac{w^{2} \mu^{2} a^{3}}{6 R_{s} \bar{x}^{2}}
$$

Here, what $\rightarrow$ volume of rectangular cavity resonator
$R_{S} \longrightarrow$ surface of the resonator
Quality factor of a circular cavity Resonator:The Quality factor of a Circular cavity Resonator is given by,

$$
Q=\frac{2.6178 a \beta^{2}}{4 \pi R_{s} \cdot v_{c}}\left[\frac{a c}{a+c}\right]
$$

Here, $v_{c} \rightarrow$ velocity of light
$\beta \rightarrow$ Phase constant
$R_{S} \longrightarrow$ Surface of the resonator
$a \rightarrow$ radius of the Circular cavity resonator
Measurement of (Q) of a Cavity resonator:-
$\rightarrow$ Quality factor $(Q)$ can also be defined as "the ratio of resonant frequency to the Bandwidth of the signal".

$$
\text { i.e: } Q=\frac{\text { Resonant frequency }}{\text { Band width of the }}
$$

$\rightarrow$ Whenever a microwave signal is transmit y through a cavity resonator, what matter all is, in what way, the cavity resonator l the resonator circuit responds to that particular microwave signal frequency.
$\rightarrow$ As a Quality factor measurement, we will consider a microwave Source, and will be transmitting different frequenci through the cavity resonator/ resonator $c_{k}$
$\rightarrow$ we will be observing how this resonant circuit responds to each and every transmitted frequency al we will be measuring the readings of the circuit, through a power indicator.
$\rightarrow$ There are several methods for measuring the ' $Q$ ' of Cavity resonator.

- Transmission method
(-) Decrement method
- Impedance measurement method
$\rightarrow$ Among these, transmission method" is simplest
$\rightarrow$ In this method cavity resonator is used as a transmission device and the output signal is measured as a function of frequency resulting in the resonance curve.

| MW Cavity |  |
| :---: | :---: | :---: |
| Source Attenuator resonator | DetectorPower <br> indicator |

Set UP for measurement of $Q$ of a Cavity resonator Using transmission method
$\rightarrow$ In the above set UP, a microwave source, continuously generates microwave frequencies Which are transmitted through Attenuator, cavity resonator as well.
$\rightarrow$ As it Keeps on generating, several different microwave frequencies are generated: At what Particular frequency, the circuit responds and the power altered from it will be obtained through Power indicator.
$\rightarrow$ Based on the Power indicator measurements as well as frequency measurements, we will be a plotting a graph from which the resonant frequency and signal bandwidth is calculated.
$\rightarrow$ From the setup above, the signal frequency of the microwave source is varied, Keeping the signal level constant and then the outpower is measured.
$\rightarrow$ As the Process goes on, several different microwave frequencies are generated. At each frequency, the power generated is noted down from the power indicator. A graph is plotted between frequency and

- Power (in dB).
$\rightarrow$ As the frequency varies from o to few range, Power also varies. At a Particular frequency, maximum power is obtained aid this frequency is known as "Resonant frequency".
$\rightarrow$ The cavity resonator is tuned to this frequency
and the signal level is again noted down to notice the difference.
$\rightarrow$ Below $3 d B$ line we will consider two different point, from which the signal Bandwidth is obtained.
$\rightarrow$ When the output is plotted, the resonance curve is obtained, from which we can notice the HalfPower Band width (HPBW) $(2 \Delta)$ values.

$$
2 \Delta= \pm \frac{1}{Q_{L}}
$$

Here, $Q_{L}$ is the loaded value

$$
\therefore Q_{L}= \pm \frac{1}{2 \Delta}= \pm \frac{\omega}{2\left(\omega-\omega_{0}\right)}
$$

Here, $\omega \rightarrow$ Angular frequency
$\omega_{0} \rightarrow$ operating frequency
Coupling Probes and coupling loops:-
$\rightarrow$ Coupling Probes and coupling loops are used as an antenna to transmit a signal into a Waveguide (or) to receive a signal from the Waveguide:
$\rightarrow$ Both are a kind of wiring mechanism used for communication PurPose:
How a Waveguide is connected to a microwave source:-
$\rightarrow$ Waveguides are the $\overline{T x \text { lines }} \overline{\text { used for }}$ transmission of microwave signals that Can be an electric field/magnetic field/
electromagnetic field ("E' Wave tiM Wave,
TEM wave respectively).
$\rightarrow$ These are in different shapes and are of different kinds.
Microwave
Source
Diode detector


Wave guide
$\rightarrow$ To transmit a microwave signal through a Waveguide, we need a microwave source.
$\rightarrow$ This microwave source can be an oscillator, a generator (or) any kind of device which continuously generates a microwave signal.
$\rightarrow$ Always, a waveguide is connected to a microwave source, which generates a microwave signal and this signal will reach the other end of the waveguide which is connected to a connectorla microwave junction / CRO.
$\rightarrow$ Initially one end of a Waveguide is connected to a microwave source.
$\rightarrow$ When the microwave signal is generated, it transmits through the waveguide.
$\rightarrow$ The figure below shows a microwave signal transmitting through a bent Waveguide along $z$-axis.

coupling Probes:-
$\rightarrow$ A Waveguide. closed at one end along win the other end also being closed behaves as a cavity resonator. consider, a cavity resonator of such kind.
$\rightarrow$ Now, if I Want to insert a microwave signal into it, we need to make a hole and should insert a pipe like structure a metallic tube which is referred to as a Probe.
$\rightarrow$ Probe
(Microcoave signal) 2 d
$\rightarrow$ You can insert (transmit)/extract (receive) a microwave signal through this hole.
$\rightarrow$ As we are coupling the pipe like structure/metallic tube to the hole of the cavity resonator that has been made, the metallic tube is referred to as "coupling Probe".
Probe acts as an Antenna:-
$\rightarrow$ When a small Probe is inserted into a Waveguide/resonator and is used for supplying/ absorbing microwave energy, it acts as an "Antenna".

* No signal in the


In this case, Antenna works as a Transmitter.

* Signal is Signal is
Present $\rightarrow \begin{gathered}\text { make a } \\ \text { hole }\end{gathered} \rightarrow \begin{gathered}\text { Couple } \\ \text { the }\end{gathered} \rightarrow \begin{gathered}\text { extract the } \\ \text { Signal }\end{gathered}$
In this Case, Antenna Works as a Receiver.
$\rightarrow$ Intotal, when a Probe is inserted/coupled into a cavity resonator and is supplied with microwave energy, it act as either Transmitting Antenna/ Receiving Antenna.
$\rightarrow$ Always current flows into this Probe.
$\rightarrow$ When You use a coupling Probe, it will set the Electric field ( $\bar{\epsilon}$ ) associated with the electromagnetic wave inside the waveguide.
$\rightarrow$ In other words, if You want to generate electric field, You need to use a coupling Probe.
Coupling loops:-
$\rightarrow$ Whenever a PiPe like structure is inserted into a waveguide/ cavity resonator with the inserted end having a turn on a loop (or) a circular shape is referred to as a coupling loop.
$\rightarrow$ Another way of injecting energy into a waveguide is by setting uP magnetic fie $(\bar{H})$ in the waveguide.
$\rightarrow$ This can be accomplished by inserting a small Probe having a turn/a circularshap a loop like structure at the inserted end into a waveguide/a cavity resonator.
$\rightarrow$ This will carry little amount of current into the waveguide. As a result, a magnetic field builds UP around the loop and expand to fit in the waveguide.

2( coupling)
$\rightarrow$ The figure shows a coupling loop with a turn at the inserted end, being inserted into the waveguide. When a microwave signal is transmitted through it, the signal moves to-ard-fro in a circular shape due to this coillike structure of the coupling loop. This results in the generation of magnetic field $(\vec{H})$.
$\rightarrow$ Intotial. Whenever an antenna has a circular shape/a coil like structure/a loop like structure at the inserted and and is supplied with energy, it Produces magnetic field $(H)$.
If You want to generate electric field, You have to use coupling probe.
If you want to generate magnetic field, you have to use mostly coupling loop.

Coupling coefficients:-


In general,

$$
\begin{aligned}
& Q_{0}=\frac{\omega_{0} L}{R} \\
& Q_{\text {ext }}=\frac{Q_{0}}{K}
\end{aligned}
$$

$k \rightarrow$ coupling coefficient
We know that

$$
\frac{1}{Q_{L}}=\frac{1}{Q_{0}}+\frac{1}{Q_{\text {ext }}} \longrightarrow \text { (1) }
$$

Case (i):- Critical coupling $(k=1)$
from (1); $\frac{1}{Q_{L}}=\frac{1}{Q_{0}}+\frac{1}{Q_{\text {ext }}}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{Q_{L}}=\frac{R}{\omega_{0} L}+\frac{K R}{\omega_{0} L} \\
& \Rightarrow \frac{1}{Q_{L}}=\frac{R}{\omega_{0} L}+\frac{R}{\omega_{0} L} \\
& \Rightarrow \frac{1}{Q_{L}}=\frac{2 R}{\omega_{0} L} \\
& \Rightarrow Q_{L}=\frac{\omega_{0} L}{2 R} \\
& \Rightarrow Q_{L}=\frac{Q_{0}}{2}=\frac{Q_{\text {ext }} \cdot K}{2}=\frac{Q_{\text {ext }}}{2} \\
& \therefore Q_{L}=\frac{Q_{\text {ext }}}{2}
\end{aligned}
$$

Case (ii):- under coupling $(k<1)$
In this case, the cavity is terminated at $V_{\text {min }}$ and hence the il impedance is the reciprocal of VSWR.

$$
\text { i.e. } K=\frac{1}{p}
$$

from (1); $\frac{1}{Q_{L}}=\frac{1}{Q_{0}}+\frac{1}{Q_{\text {ext }}}$

$$
\begin{aligned}
& =\frac{R}{\omega_{0} L}+\frac{R K}{\omega_{0} L} \\
& =\frac{R}{\omega_{0} L}+\frac{R}{P \omega_{0} L} \\
& =\frac{R}{\omega_{0} L}\left[1+\frac{1}{P}\right] \\
& =\frac{R}{\omega_{0} L}\left[\frac{1+P}{P}\right] \\
\Rightarrow Q_{L} & =\frac{\omega_{0} L}{R}\left[\frac{P}{1+P}\right] \\
\Rightarrow Q_{L} & =Q_{0}\left[\frac{P}{1+P}\right] \\
\therefore Q_{L} & =Q_{0}\left[\frac{P}{1+P}\right]
\end{aligned}
$$

Case (iii):- over coupling $(k>1)$
In this Case, the cavity is terminated at $v_{\text {max }}$ and hence the ils impedance is directly Proportional to $V S W R$.

$$
\text { i.e., } k=P
$$

$$
\text { from (1) } \begin{aligned}
\frac{1}{Q_{L}} & =\frac{1}{Q_{0}}+\frac{1}{Q_{\text {ext }}} \\
& =\frac{R}{\omega_{0} L}+\frac{R P}{\omega_{0} L} \\
& =\frac{R}{\omega_{0} L}[1+P] \\
\Rightarrow Q_{L} & =\frac{\omega_{0} L}{R(1+P)} \\
\Rightarrow Q_{L} & =\frac{Q_{0}}{(1+P)} \\
\therefore Q_{L} & =\frac{Q_{0}}{1+P}
\end{aligned}
$$

Excitation techniques of Cavity Resonator:There are following methods of cavity resonator excitation.

1. LOOP Excitation

As. shown in the given diagram, the loop excitation is carried out in the cavity resonator by introducing the loop inside the cavity. The loop is inserted from the narrow dimension of the cavity and it should be kept at the Place inside the cavity where magnetic field is maximum.
When the R.F. signal is applied through the loop, the magnetic flux starts to expand and

Collapse around the loop. This magnetic flux causes to induce the voltage in the wallis of Cavity resonator. As the induced emf is the microwave signal, therefore, the induced oscillation action inside the cavity resonator takes place.
2. Probe Excitation

As shown in the given diagram, the probe excitation is carried out in the cavity resonator by introducing the probe inside the cavity. The Probe is inserted from the broad dimension of the cavity and it should be kept at the place inside the cavity where electric field is maximum. When the R.F. signal is applied through the Probe, the electric field starts to expand and Collapse around the Probe, this electric field causes to excite the cavity resonator and the oscillation inside the resonator takes place.
3. Aperture Excitation


As shown in the given diagram, the aperture excitation is carried out by making the slot in the cavity resonator. In this case, we couple the $E$-field (or) H -field to the cavity with the help of a circular (or) rectangular waveguide. This field causes to excite the cavity resonator. If the coupling is carried out from the broad dimension of the cavity resonator, the operation will be TE mode. If we couple the input from the narrow dimension, the operation will be in TM mode.
Applications of cavity resonators:-
$\rightarrow$ Tuned Circuits
$\rightarrow$ In ultra high frequency tubes
$\rightarrow$ Klystron Amplifier
$\rightarrow$ oscillators
$\longrightarrow$ Cavity Magnetron
$\rightarrow$ In Radars

Microstriplines:-
Introduction:-
The conventional open-wire Txlines are not suitable for microwave transmission, as th. radiation losses would be high. At microwav frequencies, the Txlines employed can be broadly classified into three types. They ar,
a) Multi conductor lines
(i) Co-axial lines
(ii) Strip lines
(iii) Micro strip lines
(iv) Slot lines
(V) Coplanar lines etc.
b) Single conductor lines
(i) Rectangular Waveguides
(ii) Circular Waveguides
(iii) Elliptical Waveguides
(iv) Single-ridged waveguides
(v) Double -ridged Waveguides, etc...
C) OPen boundary structures
(i) Di-electric rods
(ii) Open Waveguides, etc...
a) Multi conductor lines

The Tx lines which has more than one conductor are called as Multi- conductor lines.
Co-axial lines:-
$\rightarrow$ This is mostly used for high frequency applications.
$\rightarrow$ A coaxial line consists of an inner conductor With inner diameter $d$ and then a concentric
cylindrical material, around it.
$\rightarrow$ This is surrounded by an outer conductor, Which is a concentric cylinder with an inner diameter $D$.
$\rightarrow$ This structure is well understood by taking a look at the following figure.

$\rightarrow$ The fundamental and dominant mode in CO-axial cables is TEM mode.
$\rightarrow$ There is no cut-off frequency ( $f_{c}$ ) in the co-axial cable. It Passes all frequencies
$\rightarrow$ However for higher frequencies, some higher order non-TEM mode starts Propagating, causing a lot of attenuation.
Strip lines:-
$\rightarrow$ These are the Planar transmission lines, Used at frequencies from 100 MHz to 100 GHz .
$\rightarrow$ A strip line consists of a central thin conducting strip of width ' $W$ ' which is greater than its thickness ' $t$ :
$\rightarrow$ It is placed inside the low loss dielectric $\left(\varepsilon_{r}\right)$ substrate of thickness b/2 between two wide group plates.
$\rightarrow$ The width of the ground plates is five times greater than the spacing between the plates.
$\rightarrow$ The thickness of metallic central conductor and the thickness of metallic ground planes are the same. The following figure shows the cross-sectional view of the stripline structure.


Ground Plane
fig:- Stripling transmission line
$\rightarrow$ The fundamental and dominant mode in striplines is TEM mode.
$\rightarrow$ For $b / 2$, there will be no Propagation in the transverse direction.
$\rightarrow$ The impedance of a strip line is inversely proportional to the ratio of the width is of the inner conductor to the distance ' $b$ ' between the ground planes.
C) Micro strip lines
$\rightarrow$ The strip line has a disadvantage that it is not accessible for adjustment and tuning.
$\rightarrow$ This is avoided in microstrip lines, which allows mounting of active or Passive devices, and also allows making minor adjustments after the circuit has been fabricated.
$\rightarrow$ A microstrip line is an unsymmetrical Paralle Plate transmission line having dielectric substrate which has a metallized ground on the bottom and a thin conducting strip on top with thickness ' $t$ ' and width ' $\omega$ '.
$\rightarrow$ This can be understood by taking a look at the following figure which shows a micro strip line.


Dielectric substrate

Ground
ciplate
fig:- Microstrip line
$\rightarrow$ The characteristic impedance of a micro strip is a function of the strip line width $w$, thickness 't' and the distance between the line and the ground plane $h$.
$\rightarrow$ Microstrip lines are of many types such as embedded micro strip, inverted micro strips, suspended micro strip and slotted microstrip transmission lines.
$\rightarrow$ In addition to these some other TEM lines such as Parallel strip lines and coplanar Strip lines also have been used for microwave integrated circuits.
other lines:-
$\rightarrow$ A Parallel strip line is similar to a two Conductor Tx line.
$\rightarrow$ It can support quasi TEM mode.
$\rightarrow$ The following figure explains this.

$\rightarrow$ A Coplanar strip line is formed by two conducting strips with one strip ground. both being Placed on the same substrate surface, for convinient connections.
The following figure explains this.
$\square$
$\rightarrow$ A slot transmission line, consists of a slot or gap in a conducting coating on a dielectric subtrateland this fabrication Process is identical to the micro strip lines Following is its diagrammatical representation
$\square$
$\rightarrow$ A Coplanar Waveguide consists of a strip of thin metallic film which is deposited on the surface of a dielectric slab.
$\rightarrow$ This slab has two electrodes running a diacent and parallel to the strip on to the same surface. The following figure explains this.

fig:- Coplbinav It atregotibe
All of these micro strip lines are used in microwave applications where the use of bulky and expensive to manufacture transmission lines will be a disadvantage.
Open Boundary structures:-
$\rightarrow$ These can also be stated as "open electromagnetic waveguides.
$\rightarrow$ A waveguide that is not entirely enclosed in a metal shielding, can be considered as an open waveguide.
$\rightarrow$ Free space is also considered as a kind of open waveguide.
$\rightarrow$ An open waveguide maybe defined as any physical device with longitudinal axial symme retry and unbounded cross-section, capable of guiding electromagnetic waves.
$\rightarrow$ Theyplossess a spectrum which is no longer
discrete
$\rightarrow$ Micro strip lines and optical fibres are also examples of open Waveguide, z
Characteristic Impedance of Microstrip lines: For high speed Logical digital circuits inter. connections are made Possible with micro. strip lines.
Schematic diagram:-


Here, $\omega \rightarrow$ width of the strip conductor
$t \rightarrow$ thickness of the stripconducto
$h \rightarrow$ distance separating the strip conductor from the ground plane
$\varepsilon_{r} \rightarrow$ relative dielectric constant of the dielectric material
from the schematic diagram, we canwrite the characteristic impedance of Microstrip lines is a function of $\omega, t, h$ ad $E_{r} i . e$,

$$
z_{0}\left(w, t, h, \varepsilon_{r}\right)
$$

It is very difficult to determine the value of $z_{0}$. However, many methods were proposed to determine the value of $z_{0}$, at accurate levels. one such among them is field Evaluation method. But this method is also too Complicated. The alternate is, "Indirect meth

In this method we will determine the value of $z_{0}$ of the given microstrip line by making a comparision with another microstripline. schematic diagram:-

' $\mathrm{O}^{\prime} \quad \rightarrow$ wire carrying potential some Positive potential
Here, $d \rightarrow$ diameter of the central conductor. for a wire -over-ground $T x$ line, $z_{0}$ is defined as follows:

$$
z_{0}=\frac{60}{\sqrt{\varepsilon_{r}}} \ln \left(\frac{4 h}{d}\right) \rightarrow \text { (1) } \quad \text { for }(h \gg d)
$$

To this equation, we shall make comparative modifications, to obtain equivalent attributes corresponding to the microstrip line. consider, the effective and equivalent values for the factors,
(1) $\varepsilon_{r} \rightarrow$ relative dielectric constant of the ambient medium
©) $d \rightarrow$ diameter of the central conductor
Determination of effective dielectric constant :-
To obtain $\varepsilon_{r e}$, we have to first consider $\left(\varepsilon_{r c}\right)$ the propagation delay $\left(T_{d}\right)$.

$$
\begin{equation*}
T_{d}=\sqrt{\mu \varepsilon} \tag{2}
\end{equation*}
$$

Here, $\mu \rightarrow$ Permeability of the material

$$
\begin{aligned}
& \mu=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
& \varepsilon \rightarrow \text { Permitivity of the material } \\
& \varepsilon=8.85 .4 \times 10^{-12} \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

In free space,

$$
\begin{align*}
T_{d f}=\sqrt{\mu_{0} \varepsilon_{0}} & =\sqrt{\left(4 \pi \times 10^{-7}\right)\left(8.854 \times 10^{-12}\right)} \\
& =3.333 \text { ns/metre } \tag{3}
\end{align*}
$$

(or)

$$
T_{d f}=1.106 \mathrm{~ns} / \mathrm{fect}
$$

When we consider a non-magnetic material

$$
\begin{equation*}
T_{d}=1.106 \sqrt{\varepsilon_{r}} \text { ns } / \text { feet } \tag{4}
\end{equation*}
$$

$\therefore$ The emperical equation for the effect dielectric constant is given by,

$$
\varepsilon_{e f f}=\varepsilon_{r e}=0.475 \varepsilon_{r}+0.67
$$

$\varepsilon_{r e} \rightarrow$ relative dielectric constant
$\varepsilon_{r} \rightarrow$ effective diflectric constant A graph showing the relation between $\varepsilon_{r}$ ad $\varepsilon_{r e}$ is as follows:


The equation, $\varepsilon_{r e}=0.475 \varepsilon_{r}+0.67$, helps us when we are shitting from circular crosssection having the wire over the ground to a microstrip line.

Transformation of a Rectangular conductor from an equivalent circular conductor:-
The emperical equation is given by,

$$
\begin{align*}
d & =0.67 \omega\left(0.8+\frac{t}{\omega}\right) \\
\Rightarrow \frac{d}{\omega} & =0.67\left(0.8+\frac{t}{\omega}\right)
\end{align*}
$$

The ratio $d / w$ corresponds to a circular conductor whereas the ratio. How corresponds to a rectangular conductor.
$W \rightarrow$ width of the microstrip line
$t \rightarrow$ thickness
A graph showing the relation between the ratios $d / \omega$ and $H / \omega$ is as follows:


Substituting the above two emperical eqn's ice, eqn's - (5) ard (6) in equation - (1) un get,

$$
\begin{array}{r}
z_{0}=\frac{87}{\sqrt{\varepsilon_{r}+1.41}} \ln \left[\frac{5.98 b}{0.8 \omega+t}\right](\Omega) \quad \rightarrow(
\end{array}
$$

eqn-(7) represents the value of $z_{0}$ for a "narrow microstrip line". Here $\frac{t}{\omega} \simeq 0.1$.
According to the Performance Parameter

$$
\text { Phase velocity }(v)=\frac{c}{\sqrt{\varepsilon_{r e}}}=\frac{3 \times 10^{8}}{\sqrt{\varepsilon_{r e}}} \mathrm{~m} / \mathrm{s} \rightarrow 8
$$

For a Wide microstripline,

$$
\begin{aligned}
& \begin{array}{r}
z_{0}=\frac{h}{\omega} \sqrt{\frac{\mu}{\varepsilon}}=\frac{377}{\sqrt{\varepsilon_{r e}}} \cdot \frac{h}{\omega}(-2)
\end{array} \text { (1) } \\
& \text { for }(\omega \gg h)
\end{aligned}
$$

Effective dielectric constant:-
$\rightarrow$ The effective dielectric constant is equal to the relative dielectric constant for homogeneous media lines such as co-axial and strip line.
$\rightarrow$ The static (low frequency) effective dielectric constant of mixed media lines like microstrip and coplanar is lower than the relative dielectric constant beat a Portion of the fields are in air above the substrate.
$\rightarrow$ This static effective dielectric constant
is a function of the relative dielectric constant of the substrate, the strip width \& even the Strip thickness.
$\rightarrow$ For microstrip as the frequency is increased, more and more of the field is confined to the substrate and hence the effective dielectric constant increases.
$\rightarrow$ The effective dielectric constant given by Txline includes all of these effects.
$\rightarrow$ For coupled lines, the effective dielectric constant for both even and odd modes are given. They are different, even for the static (low frequency) Case, and the effect of dispersion is different for each mode.
Losses in microstrip lines:-

* The attenuation constant of the dominant microstrip mode depends on geometric factors, electrical Properties of the substrate and conductors and on the frequency.
* For a non-magnetic dielectric substrate, two types of losses occur in the dominant microstrip mode:

1. Dielectric loss in the substrate
2. Ohmic skin loss in the strip conductor and the ground Plane.

* The sum of these two losses may be expressed as losses per unit length interns of an attenuation factor.
* From ordinary Txline theory, the Power carried by a wave travelling in the Positive $z$-direction is given by,

$$
\begin{align*}
P=\frac{1}{2} V I^{*} & =\frac{1}{2}\left(V_{+} e^{-\alpha z} I_{+} e^{-\alpha z}\right) \\
& =\frac{1}{2} \frac{\left|V_{+}\right|^{2}}{z_{0}} e^{-2 \alpha z} \\
& =P_{0} e^{-2 \alpha z} \longrightarrow \text { (1) } \tag{1}
\end{align*}
$$

Where, $P_{0}=\frac{\left|v_{+}\right|^{2}}{2 z_{0}}$ is the Power at $z=0$.
The attentuation constant can be express as,

$$
\begin{aligned}
\alpha & =-\frac{\left(\frac{d p}{d z}\right)}{2 p(z)} \\
\Rightarrow \alpha & =\alpha d+\alpha_{c} \rightarrow(2)
\end{aligned}
$$

$\alpha_{d} \rightarrow$ dielectric attenuation constant
$\alpha_{c} \rightarrow$ ohmic attenuation constant

* The gradiant of power in the $z$-direction in eqn-(2) can be further expressed interns of the Powerloss per unit length dissipate o by the resistance and the. Power, loss Per unit length in the dielectric ie.,

$$
\begin{aligned}
\frac{d P(z)}{d z} & =-\frac{d}{d z}\left(\frac{1}{2} v I^{*}\right) \\
& =\frac{1}{2}\left(-\frac{d v}{d z}\right) I^{*}+\frac{1}{2}\left(-\frac{d I^{*}}{d z}\right) v \rightarrow \text { (3) } \\
& =\frac{1}{2}(R I) I^{*}+\frac{1}{2} \sigma v * v \\
& =\frac{1}{2}|I|^{v} R+\frac{1}{2}\left|V^{v}\right| \sigma: \\
& =P_{C}+P_{d}
\end{aligned}
$$

Where $\sigma$ is the conductivity of the dielectric substrate board.
substituting $e^{2}-(3)$ in $e^{2}(2)$ results in,

$$
\begin{aligned}
& \alpha_{d}=\frac{P_{d}}{2 P(z)}(\mathrm{NP} / \mathrm{cm}) \\
& \alpha_{c} \simeq \frac{P_{c}}{2 P(z)}(\mathrm{NP} / \mathrm{cm})
\end{aligned}
$$

Dielectric losses:-
When the conductivity of a dielectric cannot be neglected the electric and magnetic fields in the dielectric are no longer in time phase. In that case the dielectric attenuation constant, as expressed is given by,

$$
\alpha_{d}=\frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}(\mathrm{NP} / \mathrm{cm})
$$

Where o is the conductivity of the dielectric substrate board in $\Omega / \mathrm{cm}$.
This dielectric constant can be expressed interms of dielectric loss tangent as:

$$
\tan \theta=\frac{\sigma}{\omega \varepsilon}
$$

Then the dielectric attenuation constant is expressed by,

$$
\alpha_{d}=\frac{\omega}{2} \sqrt{\mu \varepsilon} \tan \theta(\mathrm{NP} / \mathrm{cm})
$$

Q factor of a microstrip line:-
$\rightarrow M$ any microwave integrated circuits require very high quality resonant circuits.
$\rightarrow$ The Quality factor $(Q)$ of a microstrip line
is very, high, but it is limited by the radiation losses of the substrates and With low dielectric constant.
$\rightarrow$ It is know that for uniform current distribution in the microstrip the ohm attenuation constant of a wide mi co Strip line is given by,

$$
\alpha_{c}=\frac{8.686 R_{s}}{Z_{0} \omega}(d B / \mathrm{cm})
$$

$\rightarrow$ The characteristic imprdarice of a wide, microstrip line, as shown below:

$$
z_{0}=\frac{h}{\omega} \sqrt{\frac{\mu}{\varepsilon}}=\frac{377}{\sqrt{\varepsilon_{\gamma}}} \cdot \frac{h}{\omega}(\Omega)
$$

$\rightarrow$ The wavelength in the microstrip line is

$$
\lambda_{g}=\frac{30}{f \sqrt{\varepsilon_{r}}} \quad(\mathrm{~cm})
$$

Where $f$ is the frequency in $G H z$
$\rightarrow$ Since $Q_{c}$ is related to the conductor attenuation constant by,

$$
Q_{c}=\frac{27 \cdot 3}{\alpha_{c}}
$$

Where $\alpha_{c}$ is in $d B / A g, Q_{c}$ of a wide microstrip line is expressed as,

$$
Q_{c}=39.5\left(\frac{h}{R_{S}}\right) f_{G H z}
$$

Where ' $h$ ' is measured in cm an $R_{S}$ is expressed as,

$$
R_{S}=\sqrt{\frac{\pi+\mu}{\sigma}}=2 \pi \sqrt{\frac{f_{G H z}}{\sigma}} \quad(\Omega / \text { swore })
$$

Finally, the Quality factor $Q_{c}$ of a wide microstrip line is given by,

$$
Q_{C}=0.63 h \sqrt{-f_{G H z}} ?
$$

Where $\alpha$ is the conductivity of the dielectric substrate board in $\Omega / \mathrm{m}$.
For a copper strip.
$\alpha=5.8 \times 10^{8} \mathrm{~V} / \mathrm{m}$ aud then $Q_{c}$ becomes

$$
Q_{\mathrm{cu}}=4780 \mathrm{~h} \sqrt{\mathrm{fGHz}^{\mathrm{GH}}}
$$

A Quality factor $Q_{\text {dis }}$ related to the dielectric attenuation constant as shown below:

$$
Q_{d}=\frac{27 \cdot 3}{2 d}
$$

Here, $\alpha_{d}$ is in ( $d B / \lambda g$ )
From the above equations, we can write

$$
Q_{d}=\frac{\lambda_{0}}{\sqrt{\varepsilon_{r e}} \tan \theta} \simeq \frac{1}{\tan \theta}
$$

Where $\lambda_{0}$ is the free-space wavelength in cm . Note that the $Q_{d}$ for the dielectric attenutation constant of a microstrip line is approximately the reciprocal of the dielectric loss tangent $\theta$ and is relatively constant with frequency.
$100^{2}$ UNIT 5:- Waveguide components and Applications

